

Modularity of Termination in Probabilistic Term Rewriting

Jan-Christoph Kassing and Jürgen Giesl RWTH Aachen University 03.09.2025

 $\mathcal{R}_{plus} \colon \qquad \qquad \underset{\mathsf{plus}(\mathsf{s}(x),y)}{\mathsf{plus}(\mathsf{s}(x),y)} \ \to \ \ \underset{\mathsf{s}(\mathsf{plus}(x,y))}{\mathsf{plus}(x,y)}$

 $\mathcal{R}_{plus} \colon \qquad \qquad \mathsf{plus}(0,y) \ \to \ y \\ \mathsf{plus}(\mathsf{s}(x),y) \ \to \ \mathsf{s}(\mathsf{plus}(x,y))$

 $\mathsf{plus}(\mathsf{s}(0),\mathsf{plus}(0,0))$

 $\mathcal{R}_{plus} \colon \qquad \qquad \underset{\mathsf{plus}(\mathsf{s}(x),y)}{\mathsf{plus}(\mathsf{s}(x),y)} \, \to \, \underset{\mathsf{s}(\mathsf{plus}(x,y))}{\mathsf{plus}(\mathsf{s}(0),\mathsf{plus}(0,0))}$

s(plus(0, plus(0, 0)))

$$\mathcal{R}_{plus} \colon \frac{\mathsf{plus}(0,y)}{\mathsf{plus}(\mathsf{s}(x),y)} \xrightarrow{y} \mathsf{s}(\mathsf{plus}(x,y))$$

$$\mathsf{plus}(\mathsf{s}(0),\mathsf{plus}(0,0))$$

$$\mathsf{s}(\mathsf{plus}(0,\mathsf{plus}(0,0)))$$

s(plus(0,0))

$$\mathcal{R}_{plus} \colon \qquad \qquad \underset{\mathsf{plus}(\mathsf{S}(x),y)}{\mathsf{plus}(\mathsf{S}(x),y)} \xrightarrow{\mathcal{Y}} \underset{\mathsf{s}(\mathsf{plus}(x,y))}{\mathsf{plus}(\mathsf{S}(0),\mathsf{plus}(0,0))}$$

```
s(\mathsf{plus}(0,\mathsf{plus}(0,0)))
s(\mathsf{plus}(0,0))
\downarrow
s(0)
```

$$\mathcal{R}_{plus} \colon \begin{array}{ccc} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$$

$$\mathsf{plus}(\mathsf{s}(0),\mathsf{plus}(0,0))$$

```
\mathsf{plus}(\mathsf{s}(0), \mathsf{plus}(0, 0))
\mathsf{plus}(\mathsf{s}(0), 0) \qquad \mathsf{s}(\mathsf{plus}(0, \mathsf{plus}(0, 0)))
\mathsf{s}(\mathsf{plus}(0, 0))
\mathsf{s}(0)
```

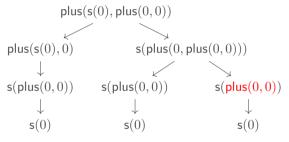
 $\mathcal{R}_{plus} \colon \qquad \qquad \underset{\mathsf{plus}(\mathsf{s}(x),\,y)}{\mathsf{plus}(\mathsf{s}(x),\,y)} \, \to \, \underset{\mathsf{s}(\mathsf{plus}(x,\,y))}{\mathsf{plus}(\mathsf{s}(0),\,\mathsf{plus}(0,0))}$

```
\begin{array}{cccc} \mathsf{plus}(\mathsf{s}(0),\mathsf{plus}(0,0)) \\ & & & & & \\ \mathsf{plus}(\mathsf{s}(0),\mathsf{plus}(0,0))) \\ \downarrow & & & & \\ \mathsf{s}(\mathsf{plus}(0,0)) & & & \\ \downarrow & & & \\ \mathsf{s}(0) & & & \\ \end{array}
```

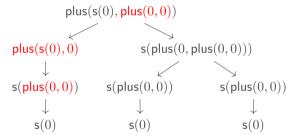
$$\mathcal{R}_{plus} \colon \begin{array}{ccc} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$$

```
\begin{array}{cccc} \mathsf{plus}(\mathsf{s}(0),\mathsf{plus}(0,0)) \\ & & & & \\ \mathsf{plus}(\mathsf{s}(0),0) & & & & \\ \mathsf{s}(\mathsf{plus}(0,\mathsf{plus}(0,0))) \\ & \downarrow & & & \\ \mathsf{s}(0) & & & \\ \mathsf{s}(0) & & & \\ \end{array}
```

$$\mathcal{R}_{plus}$$
: $\underset{\mathsf{plus}(\mathsf{s}(x),y)}{\mathsf{plus}(\mathsf{s}(x),y)} o \underset{\mathsf{s}(\mathsf{plus}(x,y))}{\mathsf{plus}(\mathsf{s}(x),y)}$



$$\mathcal{R}_{plus} \colon \qquad \qquad \underset{\mathsf{plus}(\mathsf{s}(x), \, y)}{\mathsf{plus}(\mathsf{s}(x), \, y)} \ \to \ \ \underset{\mathsf{s}(\mathsf{plus}(x, \, y))}{\mathsf{plus}(\mathsf{s}(x), \, y)}$$



Innermost evaluation: always use an innermost reducible expression

$$\mathcal{R}_{plus} \colon \qquad \qquad \underset{\mathsf{plus}(\mathsf{s}(x),y)}{\mathsf{plus}(\mathsf{s}(x),y)} \; \xrightarrow{} \; \; y \\ \mathsf{plus}(\mathsf{s}(x),y) \; \xrightarrow{} \; \; \mathsf{s}(\mathsf{plus}(x,y))$$

Innermost evaluation: always use an innermost reducible expression

Termination (Term)

 \mathcal{R} is terminating iff there is no infinite evaluation $t_0 \to_{\mathcal{R}} t_1 \to_{\mathcal{R}} \dots$

Imperative Programs:

Imperative Programs:

 \mathcal{P}_1 has property Prop \mathcal{P}_2 has property Prop

Imperative Programs:

$$\mathcal{P}_1$$
 has property Prop \mathcal{P}_2 has property Prop

Imperative Programs:

$$\mathcal{P}_1$$
 has property Prop \Rightarrow $\mathcal{P}_1; \mathcal{P}_2$ has property Prop

Imperative Programs:

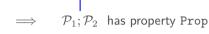
Sequential Execution

 \mathcal{P}_1 has property Prop \mathcal{P}_2 has property Prop

Imperative Programs:

Sequential Execution

 \mathcal{P}_1 has property Prop \mathcal{P}_2 has property Prop



Term Rewriting:

Imperative Programs:

Sequential Execution

 \mathcal{P}_1 has property Prop \mathcal{P}_2 has property Prop

Term Rewriting:

 \mathcal{R}_1 has property Prop \mathcal{R}_2 has property Prop

Imperative Programs:

Sequential Execution

$$\mathcal{P}_1$$
 has property Prop \mathcal{P}_2 has property Prop

$$\Rightarrow$$
 \mathcal{P}_1

 $\mathcal{P}_1; \mathcal{P}_2$ has property Prop

Term Rewriting:

$$\mathcal{R}_1$$
 has property Prop \mathcal{R}_2 has property Prop

Imperative Programs:

Sequential Execution

$$\mathcal{P}_1$$
 has property Prop \mathcal{P}_2 has property Prop

$$\Longrightarrow$$
 $\mathcal{P}_1; \mathcal{P}_2$ has property Prop

Term Rewriting:

$$\mathcal{R}_1$$
 has property Prop \mathcal{R}_2 has property Prop

$$\Longrightarrow$$

$$\mathcal{R}_1 \cup \mathcal{R}_2$$
 has property Prop

Imperative Programs:

 \mathcal{P}_1 has property Prop \mathcal{P}_2 has property Prop

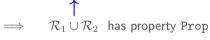
Sequential Execution

 $\Longrightarrow \hspace{0.2in} \mathcal{P}_1; \mathcal{P}_2 \hspace{0.2in} ext{has property Prop}$

Term Rewriting:

 \mathcal{R}_1 has property Prop \mathcal{R}_2 has property Prop

Union of Rule Sets



Imperative Programs:

Sequential Execution

$$\mathcal{P}_1$$
 has property Prop \mathcal{P}_2 has property Prop

$$\Longrightarrow$$
 $\mathcal{P}_1;\mathcal{P}_2$ has property Prop

Term Rewriting:

Union of Rule Sets

 \mathcal{R}_1 has property Prop \mathcal{R}_2 has property Prop

\mathcal{R}_{len} :

$$\begin{array}{ccc} & \mathsf{len}(\mathsf{nil}) & \to & 0 \\ \mathsf{len}(\mathsf{cons}(x,y)) & \to & \mathsf{s}(\mathsf{len}(y)) \end{array}$$

 $\mathcal{R}_1 \cup \mathcal{R}_2$ has property Prop

$$\begin{array}{cccc} \mathcal{R}_{plus} \colon & & & \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$$

Termination: [Toyama'87]

 \mathcal{R}_1 : Term $\mathsf{f}(\mathsf{a},\mathsf{b},x) \ o \ \mathsf{f}(x,x,x)$

 \mathcal{R}_2 : $egin{array}{cccc} \mathsf{g} & o & \mathsf{a} & \mathsf{Term} \ \mathsf{g} & o & \mathsf{b} \end{array}$

Termination: [Toyama'87]

 \mathcal{R}_2 : g ightarrow a Term g ightarrow b

$$\mathcal{R}_1$$
: Term $\mathsf{f}(\mathsf{a},\mathsf{b},x) \to \mathsf{f}(x,x,x)$

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g)$$

$$\mathcal{R}_1$$
: $\mathsf{f}(\mathsf{a},\mathsf{b},x) \to \mathsf{f}(x,x,x)$

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g)$$

$$\mathcal{R}_1$$
: $\mathsf{f}(\mathsf{a},\mathsf{b},x) \to \mathsf{f}(x,x,x)$

$$\mathcal{R}_2$$
: g $ightarrow$ a g $ightarrow$ b

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,b,g)$$

$$\mathcal{R}_1$$
: $\mathsf{f}(\mathsf{a},\mathsf{b},x) \to \mathsf{f}(x,x,x)$

$$\mathcal{R}_2$$
: g $ightarrow$ a g $ightarrow$ b

$$\mathsf{f}(\mathsf{a},\mathsf{b},\mathsf{g}) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \mathsf{f}(\mathsf{g},\mathsf{g},\mathsf{g}) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \mathsf{f}(\mathsf{a},\mathsf{g},\mathsf{g}) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \mathsf{f}(\mathsf{a},\mathsf{b},\mathsf{g}) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \ldots$$

$$\mathcal{R}_1$$
: $\mathsf{f}(\mathsf{a},\mathsf{b},x) \ o \ \mathsf{f}(x,x,x)$

$$\mathcal{R}_2$$
: g $ightarrow$ a g $ightarrow$ b

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

$$\mathcal{R}_1 \cup \mathcal{R}_2$$
 not Term

Termination: [Toyama'87]

$$\mathcal{R}_1$$
: $\mathsf{f}(\mathsf{a},\mathsf{b},x) \to \mathsf{f}(x,x,x)$

$$\mathcal{R}_2$$
: g $ightarrow$ a g $ightarrow$ b

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

 $\mathcal{R}_1 \cup \mathcal{R}_2$ not Term \Rightarrow : Termination is not Modular

Termination: [Toyama'87]

$$\mathcal{R}_1$$
: $\mathsf{f}(\mathsf{a},\mathsf{b},x) \ o \ \mathsf{f}(x,x,x)$

$$\mathcal{R}_2$$
: g $ightarrow$ a g $ightarrow$ b

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

 $\mathcal{R}_1 \cup \mathcal{R}_2$ not Term \Rightarrow : Termination is not Modular

Innermost Termination:

Termination: [Toyama'87]

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

 $\mathcal{R}_1 \cup \mathcal{R}_2$ not Term \Rightarrow : Termination is not Modular

Innermost Termination:

$$\mathcal{R}_1$$
: Term a $ightarrow$ b

$$\mathcal{R}_2$$
: Term b $ightarrow$ a

Termination: [Toyama'87]

$$\mathcal{R}_1$$
: Term $\mathsf{f}(\mathsf{a},\mathsf{b},x) \to \mathsf{f}(x,x,x)$

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

 $\mathcal{R}_1 \cup \mathcal{R}_2$ not Term \Rightarrow : Termination is not Modular

Innermost Termination:

$$\mathcal{R}_1$$
: Term a $ightarrow$ b

$$\mathcal{R}_2$$
: Term b $ightarrow$ a

a

Termination: [Toyama'87]

$$\mathcal{R}_1$$
: Term $\mathsf{f}(\mathsf{a},\mathsf{b},x) \ o \ \mathsf{f}(x,x,x)$

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

 $\mathcal{R}_1 \cup \mathcal{R}_2$ not Term \Rightarrow : Termination is not Modular

Innermost Termination:

$$\mathcal{R}_1$$
: Term a $ightarrow$ b

$$\mathcal{R}_2$$
: Term b $ightarrow$ a

$$\mathsf{a} \stackrel{\mathsf{i}}{ o}_{\mathcal{R}_1 \cup \mathcal{R}_2} \mathsf{b}$$

Termination: [Toyama'87]

$$\mathcal{R}_1$$
: $\mathsf{f}(\mathsf{a},\mathsf{b},x) \to \mathsf{f}(x,x,x)$

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

 $\mathcal{R}_1 \cup \mathcal{R}_2$ not Term \Rightarrow : Termination is not Modular

Innermost Termination:

$$\mathcal{R}_1$$
: Term a $ightarrow$ b

$$a \stackrel{i}{\rightarrow}_{\mathcal{R}_1 \cup \mathcal{R}_2} b \stackrel{i}{\rightarrow}_{\mathcal{R}_1 \cup \mathcal{R}_2} a$$

Termination: [Toyama'87]

$$\mathcal{R}_1$$
: Term $f(\mathsf{a},\mathsf{b},x) \to f(x,x,x)$

$$\mathcal{R}_2$$
: g $ightarrow$ a g $ightarrow$ b

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

 $\mathcal{R}_1 \cup \mathcal{R}_2$ not Term \Rightarrow : Termination is not Modular

Innermost Termination:

$$\mathcal{R}_1$$
: Term a $ightarrow$ b

$$\mathcal{R}_2$$
: Term b $ightarrow$ a

$$\mathsf{a} \xrightarrow{\mathsf{i}}_{\mathcal{R}_1 \cup \mathcal{R}_2} \mathsf{b} \xrightarrow{\mathsf{i}}_{\mathcal{R}_1 \cup \mathcal{R}_2} \mathsf{a} \xrightarrow{\mathsf{i}}_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

Termination: [Toyama'87]

$$\mathcal{R}_1$$
: Term $\mathsf{f}(\mathsf{a},\mathsf{b},x) \ o \ \mathsf{f}(x,x,x)$

$$\mathcal{R}_2$$
: g $ightarrow$ a g $ightarrow$ b

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

 $\mathcal{R}_1 \cup \mathcal{R}_2$ not Term \Rightarrow : Termination is not Modular

Innermost Termination:

$$\mathcal{R}_1$$
: Term a $ightarrow$ b

$$\mathcal{R}_2$$
: Term b $ightarrow$ a

$$\mathsf{a} \overset{\mathsf{i}}{\to}_{\mathcal{R}_1 \cup \mathcal{R}_2} \mathsf{b} \overset{\mathsf{i}}{\to}_{\mathcal{R}_1 \cup \mathcal{R}_2} \mathsf{a} \overset{\mathsf{i}}{\to}_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

$\mathcal{R}_1 \cup \mathcal{R}_2$ not Term

Termination: [Toyama'87]

$$\mathcal{R}_1$$
: Term $\mathsf{f}(\mathsf{a},\mathsf{b},x) \ o \ \mathsf{f}(x,x,x)$

$$\mathcal{R}_2$$
: g $ightarrow$ a g $ightarrow$ b

$$f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(g,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,g,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} f(a,b,g) \to_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

 $\mathcal{R}_1 \cup \mathcal{R}_2$ not Term \Rightarrow : Termination is not Modular

Innermost Termination:

$$\mathcal{R}_1$$
: Term a $ightarrow$ b

$$\mathcal{R}_2$$
: Term b $ightarrow$ a

$$\mathsf{a} \overset{\mathsf{i}}{\to}_{\mathcal{R}_1 \cup \mathcal{R}_2} \mathsf{b} \overset{\mathsf{i}}{\to}_{\mathcal{R}_1 \cup \mathcal{R}_2} \mathsf{a} \overset{\mathsf{i}}{\to}_{\mathcal{R}_1 \cup \mathcal{R}_2} \dots$$

 $\mathcal{R}_1 \cup \mathcal{R}_2$ not Term \Rightarrow : Innermost Termination is not Modular


```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \mathsf{Term} \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```


$$\begin{array}{cccc} \mathcal{R}'_{len} \colon & & \mathsf{Term} \\ & & \mathsf{len}(\mathsf{nil}) & \to & 0' \\ & & \mathsf{len}(\mathsf{cons}(x,y)) & \to & \mathsf{s'}(\mathsf{len}(y)) \end{array}$$

$$\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil}))$$

$$\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \mathsf{Term} \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$$

Disjoint Unions: [Gramlich'95]

 $\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil}))$

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \text{Term} \\ & \text{plus}(0,x) & \to & x \\ & \text{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

Disjoint Unions: [Gramlich'95]

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \text{Term} \\ & \text{plus}(0,x) & \to & x \\ & \text{plus}(\mathbf{s}(x),y) & \to & \mathbf{s}(\text{plus}(x,y)) \end{array}
```

 $\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}_{\mathit{plus}}} \mathsf{len}(\mathsf{cons}(\mathsf{s}(0),\mathsf{nil}))$


```
\mathcal{R}'_{len} \colon \operatorname{len}(\operatorname{nil}) \to 0' \\ \operatorname{len}(\operatorname{cons}(x,y)) \to \operatorname{s'}(\operatorname{len}(y))
```

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \text{Term} \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

$$\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}_{\mathit{plus}}} \mathsf{len}(\mathsf{cons}(\mathsf{s}(0),\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}'_{\mathit{len}}} \dots$$

Disjoint Unions: [Gramlich'95]

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \text{Term} \\ & \text{plus}(0,x) & \to & x \\ & \text{plus}(\mathbf{s}(x),y) & \to & \mathbf{s}(\text{plus}(x,y)) \end{array}
```

 $\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil})) \overset{\mathsf{i}}{\to}_{\mathcal{R}_{plus}} \mathsf{len}(\mathsf{cons}(\mathsf{s}(0),\mathsf{nil})) \overset{\mathsf{i}}{\to}_{\mathcal{R}'_{len}} \dots$

$$\mathcal{R}'_{len} \cup \mathcal{R}_{plus}$$
 is Term

Disjoint Unions: [Gramlich'95]

```
\mathcal{R}'_{len} \colon \operatorname{len}(\operatorname{nil}) \ \to \ 0' \operatorname{len}(\operatorname{cons}(x,y)) \ \to \ \operatorname{s'}(\operatorname{len}(y))
```

```
\begin{array}{cccc} \mathcal{R}_{\mathit{plus}} \colon & & \mathsf{Term} \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

$$\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}_{\mathit{plus}}} \mathsf{len}(\mathsf{cons}(\mathsf{s}(0),\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}'_{\mathit{len}}} \dots$$

 $\mathcal{R}'_{len} \cup \mathcal{R}_{plus}$ is Term

Disjoint Unions: [Gramlich'95]

```
\mathcal{R}'_{len} \colon \operatorname{len}(\operatorname{nil}) \to 0' \\ \operatorname{len}(\operatorname{cons}(x,y)) \to \operatorname{s'}(\operatorname{len}(y))
```

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \text{Term} \\ & \text{plus}(0,x) & \to & x \\ & \text{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

$$\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}_{plus}} \mathsf{len}(\mathsf{cons}(\mathsf{s}(0),\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}'_{len}} \dots$$

 $\mathcal{R}'_{len} \cup \mathcal{R}_{plus}$ is Term

$$\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \mathsf{Term} \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$$

Disjoint Unions: [Gramlich'95]

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \text{Term} \\ & \text{plus}(0,x) & \to & x \\ & \text{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

$$\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil})) \xrightarrow{\mathsf{i}}_{\mathcal{R}_{plus}} \mathsf{len}(\mathsf{cons}(\mathsf{s}(0),\mathsf{nil})) \xrightarrow{\mathsf{i}}_{\mathcal{R}'_{len}} \dots$$

 $\mathcal{R}'_{len} \cup \mathcal{R}_{plus}$ is Term

```
\mathcal{R}_{len}: Term \operatorname{len}(\operatorname{nil}) \to 0 \operatorname{len}(\operatorname{cons}(x,y)) \to \operatorname{s}(\operatorname{len}(y))
```

$$\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \mathsf{Term} \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$$

Disjoint Unions: [Gramlich'95]

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \text{Term} \\ & \text{plus}(0,x) & \to & x \\ & \text{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

```
\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil})) \overset{\mathsf{i}}{\to}_{\mathcal{R}_{plus}} \mathsf{len}(\mathsf{cons}(\mathsf{s}(0),\mathsf{nil})) \overset{\mathsf{i}}{\to}_{\mathcal{R}'_{len}} \dots
```

 $\mathcal{R}'_{len} \cup \mathcal{R}_{plus}$ is Term

Shared Constructor Systems: [Gramlich'95]

plus(len(nil),len(nil))

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \mathsf{Term} \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

Disjoint Unions: [Gramlich'95]

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \text{Term} \\ & \text{plus}(0,x) & \to & x \\ & \text{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

 $\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil})) \xrightarrow[]{i} \mathcal{R}_{\mathit{plus}} \ \mathsf{len}(\mathsf{cons}(\mathsf{s}(0),\mathsf{nil})) \xrightarrow[]{i} \mathcal{R}'_{\mathit{len}} \ \ldots$

 $\mathcal{R}'_{len} \cup \mathcal{R}_{plus}$ is Term

Shared Constructor Systems: [Gramlich'95]

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \mathsf{Term} \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

 $\mathsf{plus}(\mathsf{len}(\mathsf{nil}), \mathsf{len}(\mathsf{nil})) \xrightarrow{\mathsf{i}}_{\mathcal{R}_{\mathit{len}}} \mathsf{plus}(0, \mathsf{len}(\mathsf{nil}))$

Disjoint Unions: [Gramlich'95]

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \text{Term} \\ & \text{plus}(0,x) & \to & x \\ & \text{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

$$\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}_{\mathit{plus}}} \mathsf{len}(\mathsf{cons}(\mathsf{s}(0),\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}'_{\mathit{len}}} \dots$$

 $\mathcal{R}'_{len} \cup \mathcal{R}_{plus}$ is Term

```
\mathcal{R}_{len}: Term |\operatorname{len}(\operatorname{nil}) \rightarrow 0 \\ |\operatorname{len}(\operatorname{cons}(x,y)) \rightarrow \operatorname{s}(\operatorname{len}(y))|
```

$$\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \mathsf{Term} \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$$

$$\mathsf{plus}(\mathsf{len}(\mathsf{nil}), \mathsf{len}(\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}_{len}} \mathsf{plus}(0, \mathsf{len}(\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}_{len}} \mathsf{plus}(0, 0)$$

Disjoint Unions: [Gramlich'95]

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \text{Term} \\ & \text{plus}(0,x) & \to & x \\ & \text{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

$$\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil})) \xrightarrow[]{i} \mathcal{R}_{\mathit{plus}} \ \mathsf{len}(\mathsf{cons}(\mathsf{s}(0),\mathsf{nil})) \xrightarrow[]{i} \mathcal{R}'_{\mathit{len}} \ \ldots$$

 $\mathcal{R}'_{len} \cup \mathcal{R}_{plus}$ is Term

$$\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \mathsf{Term} \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$$

$$\mathsf{plus}(\mathsf{len}(\mathsf{nil}), \mathsf{len}(\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}_{len}} \mathsf{plus}(0, \mathsf{len}(\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}_{len}} \mathsf{plus}(0, 0) \xrightarrow[]{i}_{\mathcal{R}_{plus}} \dots$$

Disjoint Unions: [Gramlich'95]

```
\mathcal{R}'_{len} \colon \operatorname{len}(\operatorname{nil}) \to 0'
\operatorname{len}(\operatorname{cons}(x,y)) \to \operatorname{s'}(\operatorname{len}(y))
```

```
\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \text{Term} \\ & \text{plus}(0,x) & \to & x \\ & \text{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

$$\mathsf{len}(\mathsf{cons}(\mathsf{plus}(0,\mathsf{s}(0)),\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}_{\mathit{plus}}} \mathsf{len}(\mathsf{cons}(\mathsf{s}(0),\mathsf{nil})) \xrightarrow[]{i}_{\mathcal{R}'_{\mathit{len}}} \dots$$

 $\mathcal{R}'_{len} \cup \mathcal{R}_{plus}$ is Term

Shared Constructor Systems: [Gramlich'95]

```
\mathcal{R}_{len} \colon \frac{\mathsf{Ien}(\mathsf{nil}) \ \to \ 0}{\mathsf{Ien}(\mathsf{cons}(x,y)) \ \to \ \mathsf{s}(\mathsf{Ien}(y))}
```

$$\begin{array}{cccc} \mathcal{R}_{plus} \colon & & \mathsf{Term} \\ & \mathsf{plus}(0,x) & \to & x \\ & \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$$

$$\mathsf{plus}(\mathsf{len}(\mathsf{nil}), \mathsf{len}(\mathsf{nil})) \xrightarrow{\mathsf{i}}_{\mathcal{R}_{len}} \mathsf{plus}(0, \mathsf{len}(\mathsf{nil})) \xrightarrow{\mathsf{i}}_{\mathcal{R}_{len}} \mathsf{plus}(0, 0) \xrightarrow{\mathsf{i}}_{\mathcal{R}_{nlus}} \dots$$

 $\mathcal{R}_{len} \cup \mathcal{R}_{plus}$ is Term

1. Introduce Probabilistic Notions of Termination:

 $\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$

1. Introduce Probabilistic Notions of Termination:

$$\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$$

2. Modularity of AST, PAST, and SAST

1. Introduce Probabilistic Notions of Termination:

$$\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$$

- 2. Modularity of AST, PAST, and SAST
- 3. PAST \approx SAST for PTRSs

1. Introduce Probabilistic Notions of Termination:

 $\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$

- 2. Modularity of AST, PAST, and SAST
- 3. PAST \approx SAST for PTRSs

$$\mathcal{R}_{rw}$$
: $\mathsf{g}(0) \rightarrow \{1/2:0, 1/2: \mathsf{g}(\mathsf{g}(0))\}$

$$\mathcal{R}_{rw}$$
: $\mathsf{g}(0) \rightarrow \{1/2:0, 1/2: \mathsf{g}(\mathsf{g}(0))\}$

Multi-Distribution: $\{p_1:t_1,\ldots,p_k:t_k\}$ with $p_1+\ldots+p_k=1$


```
\mathcal{R}_{rw}: \mathsf{g}(0) \rightarrow \{1/2:0, 1/2:\mathsf{g}(\mathsf{g}(0))\}
```

```
Multi-Distribution: \{\,p_1:t_1,\,\ldots,\,p_k:t_k\,\} with p_1+\ldots+p_k=1 \{\,1:\mathsf{g}(0)\,\}
```



```
\mathcal{R}_{rw}: \mathsf{g}(0) \rightarrow \{ \frac{1}{2} : 0, \frac{1}{2} : \mathsf{g}(\mathsf{g}(0)) \}
```

```
Multi-Distribution: \{p_1:t_1,\ldots,p_k:t_k\} with p_1+\ldots+p_k=1 \{1:\mathsf{g}(0)\} \to_{\mathcal{R}_{rw}} \{\frac{1}{2}:0,\frac{1}{2}:\mathsf{g}^2(0)\}
```


$$\mathcal{R}_{rw}$$
: $\mathsf{g}(0) \rightarrow \{ \frac{1}{2} : 0, \frac{1}{2} : \mathsf{g}(\mathsf{g}(0)) \}$

```
\begin{split} \text{Multi-Distribution:} & \quad \{ \, p_1 : t_1, \, \ldots, \, p_k : t_k \, \} \quad \text{with } p_1 + \ldots + p_k = 1 \\ & \quad \{ \, 1 : \mathsf{g}(0) \, \} \\ & \quad \rightarrow_{\mathcal{R}_{rw}} & \quad \{ \, ^1\!/_2 : 0, \, ^1\!/_2 : \mathsf{g}^2(0) \, \} \\ & \quad \rightarrow_{\mathcal{R}_{rw}} & \quad \{ \, ^1\!/_2 : 0, \, ^1\!/_4 : \mathsf{g}(0), \, ^1\!/_4 : \mathsf{g}^3(0) \, \} \end{split}
```

```
\mathcal{R}_{rw}: \mathsf{g}(0) \rightarrow \{1/2:0, 1/2:\mathsf{g}(\mathsf{g}(0))\}
```

```
\begin{split} \text{Multi-Distribution:} & \quad \{ \, p_1 : t_1, \, \ldots, \, p_k : t_k \, \} \quad \text{with } p_1 + \ldots + p_k = 1 \\ & \quad \{ \, 1 : \mathsf{g}(0) \, \} \\ & \quad \rightarrow_{\mathcal{R}_{rw}} \quad \{ \, ^1\!/_2 : 0, \, ^1\!/_2 : \mathsf{g}^2(0) \, \} \\ & \quad \rightarrow_{\mathcal{R}_{rw}} \quad \{ \, ^1\!/_2 : 0, \, ^1\!/_4 : \mathsf{g}(0), \, ^1\!/_4 : \mathsf{g}^3(0) \, \} \\ & \quad \rightarrow_{\mathcal{R}_{rw}} \quad \{ \, ^1\!/_2 : 0, \, ^1\!/_8 : 0, \, ^1\!/_8 : \mathsf{g}^2(0), \end{split}
```

```
\mathcal{R}_{rw}: \mathsf{g}(0) \rightarrow \{1/2:0, 1/2:\mathsf{g}(\mathsf{g}(0))\}
```

```
\begin{split} \text{Multi-Distribution:} & \quad \{ \, p_1 : t_1, \, \ldots, \, p_k : t_k \, \} \quad \text{with } p_1 + \ldots + p_k = 1 \\ & \quad \{ \, 1 : \mathsf{g}(0) \, \} \\ & \quad \rightarrow_{\mathcal{R}_{rw}} \quad \{ \, ^1 \! / \! 2 : 0, \, ^1 \! / \! 2 : \mathsf{g}^2(0) \, \} \\ & \quad \rightarrow_{\mathcal{R}_{rw}} \quad \{ \, ^1 \! / \! 2 : 0, \, ^1 \! / \! 4 : \mathsf{g}(0), \, ^1 \! / \! 4 : \mathsf{g}^3(0) \, \} \\ & \quad \rightarrow_{\mathcal{R}_{rw}} \quad \{ \, ^1 \! / \! 2 : 0, \, ^1 \! / \! 8 : 0, \, ^1 \! / \! 8 : \mathsf{g}^2(0), \, ^1 \! / \! 8 : \mathsf{g}^2(0), \, ^1 \! / \! 8 : \mathsf{g}^4(0) \, \} \end{split}
```

$$\mathcal{R}_{rw}$$
: $\mathsf{g}(0) \rightarrow \{ \frac{1}{2} : 0, \frac{1}{2} : \mathsf{g}(\mathsf{g}(0)) \}$

```
Multi-Distribution: \{p_1:t_1,\ldots,p_k:t_k\} with p_1+\ldots+p_k=1 \{1:\mathsf{g}(0)\} \to_{\mathcal{R}_{rw}} \{1/2:0,1/2:\mathsf{g}^2(0)\} \to_{\mathcal{R}_{rw}} \{1/2:0,1/4:\mathsf{g}(0),1/4:\mathsf{g}^3(0)\} \to_{\mathcal{R}_{rw}} \{1/2:0,1/8:0,1/8:\mathsf{g}^2(0),1/8:\mathsf{g}^2(0),1/8:\mathsf{g}^4(0)\}
```

Almost-Sure Termination for PTRSs [Avanzini, Dal Lago, Yamada'20]

ullet $\mathcal R$ is terminating iff there is no infinite evaluation $\mu_0 \to_{\mathcal R} \mu_1 \to_{\mathcal R} \dots$

```
\mathcal{R}_{rw}: g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}
```

```
Multi-Distribution: \{p_1:t_1,\ldots,p_k:t_k\} with p_1+\ldots+p_k=1

\{1:\mathsf{g}(0)\}

\to_{\mathcal{R}_{rw}} \{\frac{1}{2}:0,\frac{1}{2}:\mathsf{g}^2(0)\}

\to_{\mathcal{R}_{rw}} \{\frac{1}{2}:0,\frac{1}{4}:\mathsf{g}(0),\frac{1}{4}:\mathsf{g}^3(0)\}

\to_{\mathcal{R}_{rw}} \{\frac{1}{2}:0,\frac{1}{8}:0,\frac{1}{8}:\mathsf{g}^2(0),\frac{1}{8}:\mathsf{g}^2(0),\frac{1}{8}:\mathsf{g}^4(0)\}
```

Almost-Sure Termination for PTRSs [Avanzini, Dal Lago, Yamada'20]

• $\mathcal R$ is **terminating** iff there is no infinite evaluation $\mu_0 \to_{\mathcal R} \mu_1 \to_{\mathcal R} \dots$

No

$$\mathcal{R}_{rw}$$
: $\mathsf{g}(0) \rightarrow \{ \frac{1}{2} : 0, \frac{1}{2} : \mathsf{g}(\mathsf{g}(0)) \}$

```
 \left\{ 1 : \mathsf{g}(0) \right\} 
 \to_{\mathcal{R}_{rw}} \quad \left\{ \frac{1}{2} : 0, \frac{1}{2} : \mathsf{g}^{2}(0) \right\} 
 \to_{\mathcal{R}_{rw}} \quad \left\{ \frac{1}{2} : 0, \frac{1}{4} : \mathsf{g}(0), \frac{1}{4} : \mathsf{g}^{3}(0) \right\} 
 \to_{\mathcal{R}_{rw}} \quad \left\{ \frac{1}{2} : 0, \frac{1}{8} : 0, \frac{1}{8} : \mathsf{g}^{2}(0), \frac{1}{8} : \mathsf{g}^{2}(0), \frac{1}{8} : \mathsf{g}^{4}(0) \right\}
```

Almost-Sure Termination for PTRSs [Avanzini, Dal Lago, Yamada'20]

 $\{p_1:t_1,\ldots,p_k:t_k\}$ with $p_1+\ldots+p_k=1$

- ullet R is terminating iff there is no infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$
- \mathcal{R} is almost-surely terminating (AST) iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$
- iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1$

No

Multi-Distribution:

$$\mathcal{R}_{rw}$$
: $\mathsf{g}(0) \to \{ \frac{1}{2} : 0, \frac{1}{2} : \mathsf{g}(\mathsf{g}(0)) \}$

Multi-Distribution: $\{ p_1 : t_1, \ldots, p_k : t_k \}$ with $p_1 + \ldots + p_k = 1$
 $\{ 1 : \mathsf{g}(0) \}$
 $\to_{\mathcal{R}_{rw}} \{ \frac{1}{2} : 0, \frac{1}{2} : \mathsf{g}^2(0) \}$

$$\rightarrow_{\mathcal{R}_{rw}} \{ 1/2 : 0, 1/4 : \mathsf{g}(0), 1/4 : \mathsf{g}^3(0) \}$$

$$\rightarrow_{\mathcal{R}_{rw}} \{ \frac{1}{2} : 0, \frac{1}{8} : 0, \frac{1}{8} : g^2(0), \frac{1}{8} : g^2(0), \frac{1}{8} : g^4(0) \}$$

Almost-Sure Termination for PTRSs [Avanzini, Dal Lago, Yamada'20]

- $\mathcal R$ is **terminating** iff there is no infinite evaluation $\mu_0 \to_{\mathcal R} \mu_1 \to_{\mathcal R} \dots$
- \mathcal{R} is almost-surely terminating (AST) iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$

No

 $|\mu|$

 $\{1:g(0)\}$ $\rightarrow_{\mathcal{R}}$ { $1/2:0, 1/2:g^2(0)$ } $\rightarrow_{\mathcal{R}_{\text{grad}}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}$ $\rightarrow_{\mathcal{R}_{max}}$ { $\frac{1}{2}:0, \frac{1}{8}:0, \frac{1}{8}:g^2(0), \frac{1}{8}:g^2(0), \frac{1}{8}:g^4(0)$ } Almost-Sure Termination for PTRSs [Avanzini, Dal Lago, Yamada'20]

 $\{p_1:t_1,\ldots,p_k:t_k\}$ with $p_1+\ldots+p_k=1$

 $|\mu|$

0

 $g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}$

 \mathcal{R}_{rw} :

Multi-Distribution:

• \mathcal{R} is almost-surely terminating (AST)

• \mathcal{R} is terminating iff there is no infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$

iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$

```
\{1:g(0)\}
\rightarrow_{\mathcal{R}} { 1/2:0, 1/2:g^2(0) }
\rightarrow_{\mathcal{R}_{\text{grad}}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}
\rightarrow_{\mathcal{R}_{max}} { \frac{1}{2}:0, \frac{1}{8}:0, \frac{1}{8}:g^2(0), \frac{1}{8}:g^2(0), \frac{1}{8}:g^4(0) }
```

 \mathcal{R}_{rw} :

Multi-Distribution:

Almost-Sure Termination for PTRSs [Avanzini, Dal Lago, Yamada'20]

• \mathcal{R} is terminating iff there is no infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$

• \mathcal{R} is almost-surely terminating (AST)

iff
$$\lim_{n\to\infty} |\mu_n|=1$$
 for every infinite evaluation $\mu_0\to_{\mathcal R} \mu_1\to_{\mathcal R}\dots$

 $g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}$

 $\{p_1:t_1,\ldots,p_k:t_k\}$ with $p_1+\ldots+p_k=1$

No

 $|\mu|$

0

1/2

```
\mathcal{R}_{rw}:
                                               g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}
```

Multi-Distribution:
$$\{p_1:t_1,\ldots,p_k:t_k\}$$
 with $p_1+\ldots+p_k=1$

$$\{1:g(0)\}\$$

$$\rightarrow_{\mathcal{R}_{rw}} \{ \frac{1}{2} : 0, \frac{1}{2} : g^2(0) \}$$

$$\rightarrow_{\mathcal{R}_{rw}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}$$

$$\rightarrow_{\mathcal{R}_{rw}} \{ \frac{1}{2} : 0, \frac{1}{8} : 0, \frac{1}{8} : g^{2}(0), \frac{1}{8} : g^{2}(0), \frac{1}{8} : g^{4}(0) \}$$

• \mathcal{R} is almost-surely terminating (AST)

$$\frac{1}{2}:0, \frac{1}{4}:g(0), \frac{1}{4}:g^3(0)$$

$$/8:0, \ ^{1}/8: \mathbf{g}^{2}(0), \ ^{1}$$

iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$

$$(0), 1/8 : g^2(0)$$

$$\rightarrow_{\mathcal{R}_{rw}}$$
 { $\frac{1}{2}$: 0, $\frac{1}{8}$: 0, $\frac{1}{8}$: $\frac{g^2(0)}{18}$: $\frac{1}{8}$: $\frac{1}$

•
$$\mathcal{R}$$
 is terminating iff there is no infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$

 $|\mu|$

0

1/2

 $1/_{2}$

No

 \mathcal{R}_{rw} : $g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}$

 $\{p_1:t_1,\ldots,p_k:t_k\}$ with $p_1+\ldots+p_k=1$

Multi-Distribution: $\{1:g(0)\}$

• \mathcal{R} is almost-surely terminating (AST)

 $\rightarrow_{\mathcal{R}}$ { $1/2:0, 1/2:g^2(0)$ }

 $\rightarrow_{\mathcal{R}_{\text{grad}}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}$

 $\rightarrow_{\mathcal{R}_{min}}$ { $\frac{1}{2}:0, \frac{1}{8}:0, \frac{1}{8}:g^2(0), \frac{1}{8}:g^2(0), \frac{1}{8}:g^4(0)$ }

• \mathcal{R} is terminating iff there is no infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$

iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$

Almost-Sure Termination for PTRSs [Avanzini, Dal Lago, Yamada'20]

 $|\mu|$

0

1/2

1/2

5/8

No

Modularity of Termination in Probabilistic Term Rewriting, J.-C. Kassing, and J. Giesl

 \mathcal{R}_{rw} : $g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}$

Multi-Distribution: $\{p_1:t_1,\ldots,p_k:t_k\}$ with $p_1+\ldots+p_k=1$

Almost-Sure Termination for PTRSs [Avanzini, Dal Lago, Yamada'20]

 $\{1:g(0)\}$

$$\rightarrow_{\mathcal{R}_{rw}} \ \{ \frac{1}{2} : 0, \frac{1}{2} : g^2(0) \}$$

$$\rightarrow_{\mathcal{R}_{rw}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^{3}(0) \}$$

$$\rightarrow_{\mathcal{R}_{rw}} \quad \{ \, {}^{1}\!/_{2} : 0, \, \, {}^{1}\!/_{8} : 0, \, \, {}^{1}\!/_{8} : \mathsf{g}^{2}(0), \, \, {}^{1}\!/_{8} : \mathsf{g}^{2}(0), \, \, {}^{1}\!/_{8} : \mathsf{g}^{4}(0) \, \}$$

• \mathcal{R} is almost-surely terminating (AST)

$$\begin{cases} 1/2:0, 1/8:0, 1/8:g^2(0), \end{cases}$$

$$\begin{cases} 1/2:0, 1/4:g(0), 1/4:g^3(0) \\ 1/2:0, 1/9:0, 1/9:g^2(0) \end{cases}$$

$$g^3(0)$$
 }

$$(0)$$
 f
), $1/8 : g^2(0)$, $1/8 : g^2(0)$

 $|\mu|$

0

1/2

1/2

5/8

• \mathcal{R} is terminating iff there is no infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$

iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \to_{\mathcal{R}} \mu_1 \to_{\mathcal{R}} \dots$

 \mathcal{R}_{coin} : g ightarrow $\left\{\ ^{1}\!/_{2}:0,\ ^{1}\!/_{2}:\mathsf{g}\ \right\}$

```
\mathcal{R}_{coin}: g 
ightarrow { ^{1}\!/_{2}:0,~^{1}\!/_{2}:g }
```

 $\{\,1:\mathsf{g}\,\}$

 $g \rightarrow \{1/2:0, 1/2:g\}$

```
\mathcal{R}_{coin}: egin{array}{c} \{1:\mathbf{g}\} \ &
ightarrow \mathcal{R}_{coin} & \{1/2:0,\ 1/2:\mathbf{g}\} \end{array}
```

 $g \rightarrow \{1/2:0, 1/2:g\}$

```
\mathcal{R}_{coin}:  \{1:g\}   \rightarrow_{\mathcal{R}_{coin}} \{1/2:0, \frac{1/2:g}{2}\}   \rightarrow_{\mathcal{R}_{coin}} \{1/2:0, \frac{1}{4}:0, \frac{1}{4}:g\}
```

 $g \rightarrow \{1/2:0, 1/2:g\}$

```
\mathcal{R}_{coin}:  \{1:g\}   \rightarrow_{\mathcal{R}_{coin}} \{1/2:0, 1/2:g\}   \rightarrow_{\mathcal{R}_{coin}} \{1/2:0, 1/4:0, 1/4:g\}   \rightarrow_{\mathcal{R}_{coin}} \dots
```

```
\mathcal{R}_{coin}: g \rightarrow \{1/2:0, 1/2:g\}
\{1:g\}
\rightarrow_{\mathcal{R}_{coin}} \{1/2:0, 1/2:g\}
\rightarrow_{\mathcal{R}_{coin}} \{1/2:0, 1/4:0, 1/4:g\}
\rightarrow_{\mathcal{R}_{coin}} \dots
```

Positive/Strong AST for PTRSs [Avanzini, Dal Lago, Yamada'20] [Bournez'05]

Positive/Strong AST for PTRSs [Avanzini, Dal Lago, Yamada'20] [Bournez'05]

• \mathcal{R} is positive almost-surely terminating (PAST) iff $\mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1 - |\mu_n|)$ (expected runtime) is finite for every infinite evaluation

Positive/Strong AST for PTRSs [Avanzini, Dal Lago, Yamada'20] [Bournez'05]

• \mathcal{R} is positive almost-surely terminating (PAST) iff $\mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1 - |\mu_n|)$ (expected runtime) is finite for every infinite evaluation

```
\mathcal{R}_{coin}: g \rightarrow \{1/2:0, 1/2:g\}
\{1:g\}
\rightarrow_{\mathcal{R}_{coin}} \{1/2:0, 1/2:g\}
\rightarrow_{\mathcal{R}_{coin}} \{1/2:0, 1/4:0, 1/4:g\}
```

Positive/Strong AST for PTRSs [Avanzini, Dal Lago, Yamada'20] [Bournez'05]

• \mathcal{R} is positive almost-surely terminating (PAST) iff $\mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1 - |\mu_n|)$ (expected runtime) is finite for every infinite evaluation

 $|\mu| = 0$

 $|\mu| = 1/2$

 $\rightarrow_{\mathcal{R}_{coin}}$...

Positive/Strong AST for PTRSs [Avanzini,Dal Lago,Yamada'20] [Bournez'05]

• \mathcal{R} is positive almost-surely terminating (PAST) iff $\mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1 - |\mu_n|)$ (expected runtime) is finite for every infinite evaluation

 $\rightarrow_{\mathcal{R}_{coin}}$...

 \mathcal{R}_{coin} :

Positive/Strong AST for PTRSs [Avanzini,Dal Lago,Yamada'20] [Bournez'05]

 $g \rightarrow \{1/2:0, 1/2:g\}$

• \mathcal{R} is positive almost-surely terminating (PAST) iff $\mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1 - |\mu_n|)$ (expected runtime) is finite for every infinite evaluation

 $|\mu| = 0$

 $|\mu| = 1/2$

 $|\mu| = 3/4$

 $g \rightarrow \{1/2:0, 1/2:g\}$

 $|\mu| = 0$

 $|\mu| = 1/2$

 $|\mu| = 3/4$

$$/4 + ...$$

• \mathcal{R} is positive almost-surely terminating (PAST) iff $\mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1-|\mu_n|)$ (expected runtime) is finite for every infinite evaluation

$$\{1:g\}$$

$$\rightarrow_{\mathcal{R}_{coin}} \{1/2:0, 1/2:g\}$$

$$\rightarrow_{\mathcal{R}_{coin}} \{1/2:0, 1/4:0, 1/4:g\}$$

$$\rightarrow_{\mathcal{R}_{coin}} \dots \qquad \mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1 - |\mu_n|) = 1 + 1/2 + 1/4 + \dots = \sum_{n=0}^{\infty} (1/2)^n$$

$$g \rightarrow \{1/2:0, 1/2:g\}$$

$$\sum_{n=0}^{\infty} (1 - |\mu_n|) = 1 + \frac{1}{2} + \frac{1}{4} + \dots = \sum_{n=0}^{\infty} (\frac{1}{2})^n$$

Positive/Strong AST for PTRSs [Avanzini, Dal Lago, Yamada'20] [Bournez'05]

• \mathcal{R} is positive almost-surely terminating (PAST) iff $\mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1-|\mu_n|)$ (expected runtime) is finite for every infinite evaluation

 $|\mu| = 0$

 $|\mu| = 1/2$

 $|\mu| = 3/4$

$$\{1:g\}$$

$$\to_{\mathcal{R}_{coin}} \{1/2:0, 1/2:g\}$$

$$\to_{\mathcal{R}_{coin}} \{1/2:0, 1/4:0, 1/4:g\}$$

$$\to_{\mathcal{R}_{coin}} \dots \qquad \mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1 - |\mu_n|) = 1 + 1/2 + 1/4 + \dots = \sum_{n=0}^{\infty} (1/2)^n = 2$$

 $g \rightarrow \{1/2:0, 1/2:g\}$

$$|\mu| = 1/2$$

 $|\mu| = 0$

 $|\mu| = 3/4$

$$\sum_{n=0}^{\infty} (1/2)^n = 2$$

Positive/Strong AST for PTRSs [Avanzini,Dal Lago,Yamada'20] [Bournez'05]

•
$$\mathcal{R}$$
 is positive almost-surely terminating (PAST) iff $\mathbb{E}(\vec{u}) = \sum_{n=0}^{\infty} a(1 - |u_n|)$

• \mathcal{R} is positive almost-surely terminating (PAST) iff $\mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1-|\mu_n|)$ (expected runtime) is finite for every infinite evaluation

 $g \rightarrow \{1/2:0, 1/2:g\}$

Positive/Strong AST for PTRSs [Avanzini, Dal Lago, Yamada'20] [Bournez'05]

- \mathcal{R} is positive almost-surely terminating (PAST) iff $\mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1-|\mu_n|)$ (expected runtime) is finite for every infinite evaluation

Yes

 $|\mu| = 0$

 $|\mu| = 1/2$

 $|\mu| = 3/4$

 \mathcal{R}_{coin} : $g \rightarrow \{1/2:0, 1/2:g\}$ $\{1:g\}$

$$\rightarrow_{\mathcal{R}_{coin}} \left\{ \frac{1}{2} : 0, \frac{1}{2} : \mathsf{g} \right\}$$

$$\rightarrow_{\mathcal{R}_{coin}} \ \left\{ \frac{1}{2} : 0, \frac{1}{4} : 0, \frac{1}{4} : g \right\}$$

$$-\sum_{i=1}^{\infty} (1)^{i}$$

$$1-|\mu_n|$$

$$n=0$$
go. Yamada'20 \mid [B

Positive/Strong AST for PTRSs [Avanzini, Dal Lago, Yamada'20] [Bournez'05]

- \mathcal{R} is positive almost-surely terminating (PAST) iff $\mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1-|\mu_n|)$ (expected runtime) is finite for every infinite evaluation
- \mathcal{R} is strong almost-surely terminating (SAST) iff there exists a $C_t \in \mathbb{R}$ such that $\mathbb{E}(\vec{\mu}) < C_t < \infty$ for every infinite evaluation $\vec{\mu}$ starting with $\{1:t\}$

 $|\mu| = 0$

 $|\mu| = 1/2$

Yes

 \mathcal{R}_{coin} : $g \rightarrow \{1/2:0, 1/2:g\}$

 $\{1:g\}$

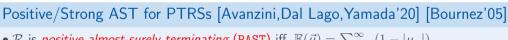
$$ightarrow_{\mathcal{R}_{coin}}$$
 { $1/2:0,\ 1/2:g$ }

$$\rightarrow_{\mathcal{R}_{coin}} \{ \frac{1}{2} : 0, \frac{1}{4} : 0, \frac{1}{4} : g \}$$

$$\rightarrow_{\mathcal{R}_{coin}}$$
 ... $\mathbb{E}(\vec{\mu}) = \sum_{n=0}^{\infty} (1 - |\mu_n|) = 1 + 1/2 + 1/4 + \dots = \sum_{n=0}^{\infty} (1/2)^n = 2$

$$(1-|\mu_n|)$$

$$=\sum_{n=0}^{\infty} (1$$





 $|\mu| = 0$

 $|\mu| = 1/2$

 $|\mu| = 3/4$

•
$$\mathcal{R}$$
 is strong almost-surely terminating (SAST) iff there exists a $C_t \in \mathbb{R}$ such that $\mathbb{E}(\vec{\mu}) < C_t < \infty$ for every infinite evaluation $\vec{\mu}$ starting with $\{1:t\}$

(expected runtime) is finite for every infinite evaluation

 $\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$

 $\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$

AST and not PAST:

$$\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$$

AST and not PAST:

$$\mathcal{R}_{rw}$$
:

$$g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}$$

$$\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$$

AST and not PAST:

$$\mathcal{R}_{rw}$$
: $\mathsf{g}(0) \rightarrow \{1/2:0, 1/2: \mathsf{g}(\mathsf{g}(0))\}$

Symmetric Random Walk

$$\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$$

AST and not PAST:

$$\mathcal{R}_{rw}$$
: $\mathsf{g}(0) \rightarrow \{1/2:0, 1/2: \mathsf{g}(\mathsf{g}(0))\}$

Symmetric Random Walk

 \Rightarrow AST as we have seen

$$\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$$

AST and not PAST:

$$\mathcal{R}_{rw}$$
:

$$g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}$$

Symmetric Random Walk

- \Rightarrow AST as we have seen
- \Rightarrow Not PAST (no details)

PAST and not SAST:

PAST and not SAST:

$$\begin{array}{cccc} \mathcal{R} \colon & & \mathsf{f}(x) & \rightarrow & \{{}^1\!/{}2 : \mathsf{f}(\mathsf{s}(x)), {}^1\!/{}2 : 0\} \\ & & \mathsf{f}(x) & \rightarrow & \{1 : \mathsf{g}(x)\} \\ & & & \mathsf{"g}(\mathsf{s}^k(x)) & \rightarrow & \Theta(4^k) \text{"} \\ \end{array}$$

PAST and not SAST:

```
\mathcal{R}: \qquad \qquad \mathsf{f}(x) \quad \rightarrow \quad \{1/2: \mathsf{f}(\mathsf{s}(x)), 1/2: 0\} \\ \mathsf{f}(x) \quad \rightarrow \quad \{1: \mathsf{g}(x)\} \\ \mathsf{"g}(\mathsf{s}^k(x)) \quad \rightarrow \quad \Theta(4^k) \mathsf{"}
```

Starting with $\{1 : f(0)\}$:

PAST and not SAST:

$$\begin{array}{cccc} \mathcal{R} \colon & & \mathsf{f}(x) & \rightarrow & \{1/2 : \mathsf{f}(\mathsf{s}(x)), 1/2 : 0\} \\ & & \mathsf{f}(x) & \rightarrow & \{1 : \mathsf{g}(x)\} \\ & & & \mathsf{"g}(\mathsf{s}^k(x)) & \rightarrow & \Theta(4^k) " \end{array}$$

Starting with $\{1 : f(0)\}$:

1. Only using the first f-rule:

$$\{1:\mathsf{f}(0)\}\to_{\mathcal{R}} \{{}^{1}\!/{}_{2}:\mathsf{f}(\mathsf{s}(0)),{}^{1}\!/{}_{2}:0\}$$

PAST and not SAST:

$$\begin{array}{cccc} \mathcal{R} \colon & & \mathsf{f}(x) & \rightarrow & \{1/2: \mathsf{f}(\mathsf{s}(x)), 1/2: 0\} \\ & & \mathsf{f}(x) & \rightarrow & \{1: \mathsf{g}(x)\} \\ & & & \mathsf{g}(\mathsf{s}^k(x)) & \rightarrow & \Theta(4^k)" \end{array}$$

Starting with $\{1 : f(0)\}$:

1. Only using the first f-rule:

$$\begin{aligned} \{1: \mathsf{f}(0)\} \to_{\mathcal{R}} & \{{}^{1}\!/{}_{2}: \mathsf{f}(\mathsf{s}(0)), {}^{1}\!/{}_{2}: 0\} \\ \to_{\mathcal{R}} & \{{}^{1}\!/{}_{4}: \mathsf{f}(\mathsf{s}^{2}(0)), {}^{3}\!/{}_{4}: 0\} \to_{\mathcal{R}} \dots \end{aligned}$$

PAST and not SAST:

$$\begin{array}{cccc} \mathcal{R} \colon & \mathsf{f}(x) & \to & \{1/2 : \mathsf{f}(\mathsf{s}(x)), 1/2 : 0\} \\ & \mathsf{f}(x) & \to & \{1 : \mathsf{g}(x)\} \\ & \mathsf{"g}(\mathsf{s}^k(x)) & \to & \Theta(4^k) " \end{array}$$

Starting with $\{1 : f(0)\}$:

1. Only using the first f-rule:

$$\begin{split} \{1: \mathsf{f}(0)\} \to_{\mathcal{R}} \{1/2: \mathsf{f}(\mathsf{s}(0)), 1/2: 0\} \\ \to_{\mathcal{R}} \{1/4: \mathsf{f}(\mathsf{s}^2(0)), 3/4: 0\} \to_{\mathcal{R}} \dots \end{split}$$

Coin Flip $\Rightarrow \mathbb{E}(\vec{\mu}) = 2 < \infty$

PAST and not SAST:

$$\begin{array}{cccc} \mathcal{R} \colon & & \mathsf{f}(x) & \rightarrow & \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ & & \mathsf{f}(x) & \rightarrow & \{1:\mathsf{g}(x)\} \\ & & & \mathsf{g}(\mathsf{s}^k(x)) & \rightarrow & \Theta(4^k)" \end{array}$$

Starting with $\{1 : f(0)\}$:

1. Only using the first f-rule:

$$\begin{split} \{1: \mathsf{f}(0)\} \to_{\mathcal{R}} \{1/2: \mathsf{f}(\mathsf{s}(0)), 1/2: 0\} \\ \to_{\mathcal{R}} \{1/4: \mathsf{f}(\mathsf{s}^2(0)), 3/4: 0\} \to_{\mathcal{R}} \dots \end{split}$$

Coin Flip
$$\Rightarrow \mathbb{E}(\vec{\mu}) = 2 < \infty$$

2. Using the first f-rule k-times:

$$\{1: f(0)\}$$

PAST and not SAST:

$$\begin{array}{cccc} \mathcal{R} \colon & & \mathsf{f}(x) & \to & \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ & & \mathsf{f}(x) & \to & \{1:\mathsf{g}(x)\} \\ & & & \mathsf{g}(\mathsf{s}^k(x)) & \to & \Theta(4^k)" \end{array}$$

Starting with $\{1 : f(0)\}$:

1. Only using the first f-rule:

$$\begin{aligned} \{1: \mathsf{f}(0)\} \to_{\mathcal{R}} & \{1/2: \mathsf{f}(\mathsf{s}(0)), 1/2: 0\} \\ \to_{\mathcal{R}} & \{1/4: \mathsf{f}(\mathsf{s}^2(0)), 3/4: 0\} \to_{\mathcal{R}} \dots \end{aligned}$$

Coin Flip
$$\Rightarrow \mathbb{E}(\vec{\mu}) = 2 < \infty$$

2. Using the first f-rule k-times:

$$\{1:\mathsf{f}(0)\}\to^{\pmb{k}}_{\mathcal{R}}\{(1/2)^{\pmb{k}}:\mathsf{f}(\mathsf{s}^{\pmb{k}}(0)),1-(1/2)^{\pmb{k}}:0\}$$

PAST and not SAST:

$$\mathcal{R}\colon \qquad \qquad \mathsf{f}(x) \quad \rightarrow \quad \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) \quad \rightarrow \quad \{1:\mathsf{g}(x)\} \\ \mathsf{"g}(\mathsf{s}^k(x)) \quad \rightarrow \quad \Theta(4^k)\mathsf{"}$$

Starting with $\{1 : f(0)\}$:

1. Only using the first f-rule:

$$\begin{aligned} \{1: \mathsf{f}(0)\} \to_{\mathcal{R}} \{1/2: \mathsf{f}(\mathsf{s}(0)), 1/2: 0\} \\ \to_{\mathcal{R}} \{1/4: \mathsf{f}(\mathsf{s}^2(0)), 3/4: 0\} \to_{\mathcal{R}} \dots \end{aligned}$$

Coin Flip
$$\Rightarrow \mathbb{E}(\vec{\mu}) = 2 < \infty$$

2. Using the first f-rule k-times:

$$\begin{aligned} \{1:\mathsf{f}(0)\} \to_{\mathcal{R}}^{\pmb{k}} & \{(1/2)^{\pmb{k}}:\mathsf{f}(\mathsf{s}^{\pmb{k}}(0)), 1-(1/2)^{\pmb{k}}:0\} \\ \to_{\mathcal{R}} & \{(1/2)^{\pmb{k}}:\mathsf{g}(\mathsf{s}^{\pmb{k}}(0)), 1-(1/2)^{\pmb{k}}:0\} \to_{\mathcal{R}} \ldots \end{aligned}$$

PAST and not SAST:

```
\mathcal{R}: \qquad \qquad \mathsf{f}(x) \quad \rightarrow \quad \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) \quad \rightarrow \quad \{1:\mathsf{g}(x)\} \\ \mathsf{"g}(\mathsf{s}^k(x)) \quad \rightarrow \quad \Theta(4^k)\mathsf{"}
```

Starting with $\{1 : f(0)\}$:

1. Only using the first f-rule:

$$\begin{split} \{1: \mathsf{f}(0)\} \to_{\mathcal{R}} \{1/2: \mathsf{f}(\mathsf{s}(0)), 1/2: 0\} \\ \to_{\mathcal{R}} \{1/4: \mathsf{f}(\mathsf{s}^2(0)), 3/4: 0\} \to_{\mathcal{R}} \dots \end{split}$$

Coin Flip
$$\Rightarrow \mathbb{E}(\vec{\mu}) = 2 < \infty$$

2. Using the first f-rule k-times:

$$\begin{aligned} \{1:\mathsf{f}(0)\} \to_{\mathcal{R}}^{\pmb{k}} & \{(1/2)^{\pmb{k}}:\mathsf{f}(\mathsf{s}^{\pmb{k}}(0)), 1-(1/2)^{\pmb{k}}:0\} \\ \to_{\mathcal{R}} & \{(1/2)^{\pmb{k}}:\mathsf{g}(\mathsf{s}^{\pmb{k}}(0)), 1-(1/2)^{\pmb{k}}:0\} \to_{\mathcal{R}} \dots \end{aligned}$$

PAST and not SAST:

$$\begin{array}{cccc} \mathcal{R} \colon & & \mathsf{f}(x) & \rightarrow & \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ & & \mathsf{f}(x) & \rightarrow & \{1:\mathsf{g}(x)\} \\ & & & \mathsf{g}(\mathsf{s}^k(x)) & \rightarrow & \Theta(4^k)" \end{array}$$

Starting with $\{1 : f(0)\}$:

1. Only using the first f-rule:

$$\begin{aligned} \{1: \mathsf{f}(0)\} \to_{\mathcal{R}} \{1/2: \mathsf{f}(\mathsf{s}(0)), 1/2: 0\} \\ \to_{\mathcal{R}} \{1/4: \mathsf{f}(\mathsf{s}^2(0)), 3/4: 0\} \to_{\mathcal{R}} \dots \end{aligned}$$

Coin Flip $\Rightarrow \mathbb{E}(\vec{\mu}) = 2 < \infty$

2. Using the first f-rule k-times:

$$\begin{aligned} \{1:\mathsf{f}(0)\} \to_{\mathcal{R}}^{\pmb{k}} \{(1/2)^{\pmb{k}}:\mathsf{f}(\mathsf{s}^{\pmb{k}}(0)), 1-(1/2)^{\pmb{k}}:0\} \\ \to_{\mathcal{R}} \{(1/2)^{\pmb{k}}:\mathsf{g}(\mathsf{s}^{\pmb{k}}(0)), 1-(1/2)^{\pmb{k}}:0\} \to_{\mathcal{R}} \ldots \end{aligned}$$

 $\mathbb{E}(\vec{\mu})$

PAST and not SAST:

$$\begin{array}{cccc} \mathcal{R} \colon & & \mathsf{f}(x) & \to & \{1/2 : \mathsf{f}(\mathsf{s}(x)), 1/2 : 0\} \\ & & \mathsf{f}(x) & \to & \{1 : \mathsf{g}(x)\} \\ & & & \mathsf{"g}(\mathsf{s}^k(x)) & \to & \Theta(4^k) " \end{array}$$

Starting with $\{1 : f(0)\}$:

$$\{1: f(0)\} \to_{\mathcal{R}} \{1/2: f(s(0)), 1/2: 0\}$$
$$\to_{\mathcal{R}} \{1/4: f(s^2(0)), 3/4: 0\} \to_{\mathcal{R}} \dots$$

Coin Flip
$$\Rightarrow \mathbb{E}(\vec{\mu}) = 2 < \infty$$

2. Using the first f-rule
$$k$$
-times:

$$\begin{aligned} \{1:\mathsf{f}(0)\} \to_{\mathcal{R}}^{\pmb{k}} \{(1/2)^{\pmb{k}}:\mathsf{f}(\mathsf{s}^{\pmb{k}}(0)), 1-(1/2)^{\pmb{k}}:0\} \\ \to_{\mathcal{R}} \{(1/2)^{\pmb{k}}:\mathsf{g}(\mathsf{s}^{\pmb{k}}(0)), 1-(1/2)^{\pmb{k}}:0\} \to_{\mathcal{R}} \ldots \end{aligned}$$

$$\mathbb{E}(\vec{\mu}) \approx (1/2)^k \cdot 4^k = 2^k < \infty$$

PAST and not SAST:

$$\begin{array}{cccc} \mathcal{R} \colon & & \mathsf{f}(x) & \rightarrow & \{1/2 : \mathsf{f}(\mathsf{s}(x)), 1/2 : 0\} \\ & & \mathsf{f}(x) & \rightarrow & \{1 : \mathsf{g}(x)\} \\ & & & \mathsf{g}(\mathsf{s}^k(x)) & \rightarrow & \Theta(4^k)" \end{array}$$

Starting with $\{1 : f(0)\}$:

1. Only using the first f-rule:

$$\{1: f(0)\} \to_{\mathcal{R}} \{1/2: f(s(0)), 1/2: 0\}$$
$$\to_{\mathcal{R}} \{1/4: f(s^2(0)), 3/4: 0\} \to_{\mathcal{R}} \dots$$

Coin Flip $\Rightarrow \mathbb{E}(\vec{\mu}) = 2 < \infty$ 2. Using the first f-rule k-times:

$$\begin{aligned} \{1:\mathsf{f}(0)\} \to_{\mathcal{R}}^{\pmb{k}} \{(1/2)^{\pmb{k}}:\mathsf{f}(\mathsf{s}^{\pmb{k}}(0)), 1 - (1/2)^{\pmb{k}}:0\} \\ \to_{\mathcal{R}} \{(1/2)^{\pmb{k}}:\mathsf{g}(\mathsf{s}^{\pmb{k}}(0)), 1 - (1/2)^{\pmb{k}}:0\} \to_{\mathcal{R}} \dots \end{aligned}$$

 $\mathbb{E}(\vec{\mu}) pprox (1/2)^{k} \cdot 4^{k} = 2^{k} < \infty$ but unbounded!

Overview

1. Introduce Probabilistic Notions of Termination:

$$\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$$

- 2. Modularity of AST, PAST, and SAST
- 3. PAST \approx SAST for PTRSs

Overview

1. Introduce Probabilistic Notions of Termination:

 $\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$

- 2. Modularity of AST, PAST, and SAST
- 3. PAST \approx SAST for PTRSs

Disjoint Unions:

 \mathcal{R}_1 : $f(x) \rightarrow \{1/2: x, 1/2: f^2(x)\}$ AST

 \mathcal{R}_2 : $\mathbf{g}(x) \quad \rightarrow \quad \left\{ {}^1\!/2:x,{}^1\!/2:\mathbf{g}^2(x) \right\}$

Disjoint Unions:

 \mathcal{R}_1 : f(x) \rightarrow {1/2: x, 1/2: f²(x)}

 \mathcal{R}_2 : $\mathsf{g}(x) \quad \to \quad \{1/2: x, 1/2: \mathsf{g}^2(x)\}$ AST

 $\mathsf{f}(\mathsf{g}(x))$

Yes

Disjoint Unions:

Yes

 \mathcal{R}_1 : f(x) \rightarrow {1/2: x, 1/2: f²(x)} AST

 \mathcal{R}_2 : $\mathsf{g}(x) \ \to \ \{{}^1\!/{}_2:x,{}^1\!/{}_2:\mathsf{g}^2(x)\}$ AST

f(g(x))

Disjoint Unions:

Yes

 \mathcal{R}_1 : f(x) $\to \{1/2: x, 1/2: f^2(x)\}$ AST

 \mathcal{R}_2 :

 $\mathbf{g}(x) \quad \rightarrow \quad \left\{ 1/2: x, 1/2: \mathbf{g}^2(x) \right\} \qquad \text{AST}$

f(g(x))

Shared Constructor Systems:

Yes

Disjoint Unions:

Yes

$$\mathcal{R}_1$$
:
$$\mathsf{f}(x) \quad \rightarrow \quad \{1/2: x, 1/2: \mathsf{f}^2(x)\}$$
 AST

 \mathcal{R}_2 : g(x) \rightarrow {1/2: x, 1/2: $\mathsf{g}^2(x)$ } AST

f(g(x))

Shared Constructor Systems:

Yes

$$\mathcal{R}_1$$
:
$$\mathsf{f}(\mathsf{s}(x)) \quad \rightarrow \quad \{ {}^{1}/_{2} : \mathsf{f}(x), {}^{1}/_{2} : \mathsf{f}(\mathsf{s}^{2}(x)) \}$$

$$\mathcal{R}_2$$
: g(0) $\rightarrow \{1/2 : s(0), 1/2 : s(g^2(0))\}$ AST

Disjoint Unions:

Yes

 \mathcal{R}_1 : AST $f(x) \rightarrow \{1/2: x, 1/2: f^2(x)\}$

 \mathcal{R}_2 : $g(x) \rightarrow \{1/2: x, 1/2: g^2(x)\}$

AST

f(g(x))

Shared Constructor Systems:

Yes

AST $f(s(x)) \rightarrow \{1/2 : f(x), 1/2 : f(s^2(x))\}$

 \mathcal{R}_2

AST $g(0) \rightarrow \{1/2 : s(0), 1/2 : s(g^2(0))\}$

 $\{1: f(g(0))\}\$

Disjoint Unions:

Yes

$$\mathcal{R}_1$$
: AST $f(x) \rightarrow \{1/2: x, 1/2: f^2(x)\}$

 \mathcal{R}_2 : $\mathsf{g}(x) \rightarrow \{1/2: x, 1/2: \mathsf{g}^2(x)\}$ AST

f(g(x))

Shared Constructor Systems:

Yes

$$\mathcal{R}_1$$
:
 $f(s(x)) \rightarrow \{1/2 : f(x), 1/2 : f(s^2(x))\}$

 \mathcal{R}_2 : $\mathbf{g}(0) \rightarrow \{1/2 : \mathbf{s}(0), 1/2 : \mathbf{s}(\mathbf{g}^2(0))\}$ AST

 $\{1: f(g(0))\} \xrightarrow{i}_{\mathcal{R}_2} \{1/2: f(s(0)), 1/2: f(s(g(g(0))))\}$

Disjoint Unions:

Yes

$$\mathcal{R}_1$$
: AST $\mathsf{f}(x) \rightarrow \{1/2: x, 1/2: \mathsf{f}^2(x)\}$

 \mathcal{R}_2 : g(x) \rightarrow {1/2: x, 1/2: $g^2(x)$ } AST

f(g(x))

Shared Constructor Systems:

Yes

$$\mathcal{R}_1$$
:
 $f(s(x)) \rightarrow \{1/2 : f(x), 1/2 : f(s^2(x))\}$

 $\{1: \mathsf{f}(\mathsf{g}(0))\} \xrightarrow{\mathsf{i}}_{\mathcal{R}_2} \{1/2: \mathsf{f}(\mathsf{s}(0)), 1/2: \mathsf{f}(\mathsf{s}(\mathsf{g}(\mathsf{g}(0))))\} \xrightarrow{\mathsf{i}}_{\mathcal{R}_1} \dots$

Disjoint Unions:

Disjoint Unions:

No

 $\mathcal{R}_1\colon \begin{array}{ccc} \mathsf{f}(x) & \to & \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) & \to & \{1:\mathsf{g}(x)\} \\ \text{"}\mathsf{g}(\mathsf{s}^k(x)) & \to & \Theta(4^k)\text{"} \end{array}$

 $\{1: c(f(0), f(0))\}$

 \mathcal{R}_2 : $\mathsf{b}(x) \to \mathsf{c}(x,x)$ PAST

Disjoint Unions:

```
\mathcal{R}_1\colon \begin{array}{ccc} \mathsf{f}(x) & \to & \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) & \to & \{1:\mathsf{g}(x)\} \\ \text{"}\mathsf{g}(\mathsf{s}^k(x)) & \to & \Theta(4^k)\text{"} \end{array}
```

$$\mathcal{R}_2$$
: $\mathsf{b}(x) o \mathsf{c}(x,x)$ PAST

$$\begin{array}{c} \{1: \mathsf{c}(\mathsf{f}(0), \mathsf{f}(0))\} \\ \to_{\mathcal{R}_1} & \{1/2: \mathsf{c}(\mathbf{0}, \mathsf{f}(\mathbf{0})), 1/2: \mathsf{c}(\mathsf{f}(\mathsf{s}(0)), \mathsf{f}(0))\} \end{array}$$

Disjoint Unions:

```
\mathcal{R}_1\colon \begin{array}{ccc} \mathsf{f}(x) & \to & \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) & \to & \{1:\mathsf{g}(x)\} \\ \text{"}\mathsf{g}(\mathsf{s}^k(x)) & \to & \Theta(4^k)\text{"} \end{array}
```

```
\mathcal{R}_2: \mathsf{b}(x) \to \mathsf{c}(x,x) PAST
```

```
 \begin{array}{ccc} & \{1:\mathsf{c}(\mathsf{f}(0),\mathsf{f}(0))\} \\ \to_{\mathcal{R}_1} & \{{}^{1}\!/{}_2:\mathsf{c}(0,\mathsf{f}(0)),{}^{1}\!/{}_2:\mathsf{c}(\mathsf{f}(\mathsf{s}(0)),\mathsf{f}(0))\} \\ \to_{\mathcal{R}_1} & \{ & \dots & ,{}^{1}\!/{}_4:\mathsf{c}(0,\mathsf{f}(0)),{}^{1}\!/{}_4:\mathsf{c}(\mathsf{f}(\mathsf{s}^2(0)),\mathsf{f}(0))\} \end{array}
```

```
\mathcal{R}_1\colon \qquad \qquad \mathsf{f}(x) \quad \to \quad \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) \quad \to \quad \{1:\mathsf{g}(x)\} \\ \mathsf{"g}(\mathsf{s}^k(x)) \quad \to \quad \Theta(4^k)\mathsf{"}
```

```
\mathcal{R}_2: \mathsf{b}(x) \to \mathsf{c}(x,x) PAST
```

Disjoint Unions:

No

```
\mathcal{R}_1\colon \qquad \qquad \mathsf{f}(x) \quad \rightarrow \quad \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) \quad \rightarrow \quad \{1:\mathsf{g}(x)\} \\ \mathsf{"g}(\mathsf{s}^k(x)) \quad \rightarrow \quad \Theta(4^k)\mathsf{"}
```

```
\mathcal{R}_2: \mathsf{b}(x) \to \mathsf{c}(x,x) PAST
```

```
 \begin{cases} 1: \mathsf{c}(\mathsf{f}(0),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ {}^{1}\!/{}_2: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_2: \mathsf{c}(\mathsf{f}(\mathsf{s}(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \dots, {}^{1}\!/{}_4: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_4: \mathsf{c}(\mathsf{f}(\mathsf{s}^2(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \dots, {}^{1}\!/{}_8: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_8: \mathsf{c}(\mathsf{f}(\mathsf{s}^3(0)),\mathsf{f}(0)) \} \end{cases}
```

 $\mathbb{E}(\vec{\mu})$

Disjoint Unions:

```
\mathcal{R}_1\colon \qquad \qquad \mathsf{f}(x) \quad \to \quad \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) \quad \to \quad \{1:\mathsf{g}(x)\} \\ \mathsf{"g}(\mathsf{s}^k(x)) \quad \to \quad \Theta(4^k)\mathsf{"}
```

```
\mathcal{R}_2: \mathsf{b}(x) \to \mathsf{c}(x,x) PAST
```

```
 \begin{cases} 1: \mathsf{c}(\mathsf{f}(0),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ 1/2: \mathsf{c}(0,\mathsf{f}(0)), 1/2: \mathsf{c}(\mathsf{f}(\mathsf{s}(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \dots, 1/4: \mathsf{c}(0,\mathsf{f}(0)), 1/4: \mathsf{c}(\mathsf{f}(\mathsf{s}^2(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \dots, \dots, 1/8: \mathsf{c}(0,\mathsf{f}(0)), 1/8: \mathsf{c}(\mathsf{f}(\mathsf{s}^3(0)),\mathsf{f}(0)) \} \end{cases}
```

$$\mathbb{E}(\vec{\mu}) \ge 1/2 \cdot 2^1$$

Disjoint Unions:

No

```
\mathcal{R}_1\colon \qquad \qquad \mathsf{f}(x) \quad \to \quad \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) \quad \to \quad \{1:\mathsf{g}(x)\} \\ \mathsf{"g}(\mathsf{s}^k(x)) \quad \to \quad \Theta(4^k)\mathsf{"}
```

```
\mathcal{R}_2: \mathsf{b}(x) \to \mathsf{c}(x,x) PAST
```

```
 \begin{cases} 1: \mathsf{c}(\mathsf{f}(0),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ {}^{1}\!/{}_2: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_2: \mathsf{c}(\mathsf{f}(\mathsf{s}(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \ldots, {}^{1}\!/{}_4: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_4: \mathsf{c}(\mathsf{f}(\mathsf{s}^2(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \ldots, {}^{1}\!/{}_8: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_8: \mathsf{c}(\mathsf{f}(\mathsf{s}^3(0)),\mathsf{f}(0)) \} \end{cases}
```

 $\mathbb{E}(\vec{\mu}) > 1/2 \cdot 2^1 + 1/4 \cdot 2^2 +$

Disjoint Unions:

No

```
\mathcal{R}_1\colon \qquad \qquad \mathsf{f}(x) \quad \to \quad \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) \quad \to \quad \{1:\mathsf{g}(x)\} \\ \mathsf{"g}(\mathsf{s}^k(x)) \quad \to \quad \Theta(4^k)\mathsf{"}
```

```
\mathcal{R}_2: \mathsf{b}(x) \to \mathsf{c}(x,x) PAST
```

```
 \begin{cases} 1: \mathsf{c}(\mathsf{f}(0),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ {}^{1}\!/{}_2: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_2: \mathsf{c}(\mathsf{f}(\mathsf{s}(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \ldots, {}^{1}\!/{}_4: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_4: \mathsf{c}(\mathsf{f}(\mathsf{s}^2(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \ldots, {}^{1}\!/{}_8: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_8: \mathsf{c}(\mathsf{f}(\mathsf{s}^3(0)),\mathsf{f}(0)) \} \end{cases}
```

 $\mathbb{E}(\vec{\mu}) > 1/2 \cdot 2^1 + 1/4 \cdot 2^2 + 1/8 \cdot 2^3$

No

```
\mathcal{R}_1: \qquad \qquad \mathsf{f}(x) \quad \rightarrow \quad \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) \quad \rightarrow \quad \{1:\mathsf{g}(x)\} \\ \mathsf{"g}(\mathsf{s}^k(x)) \quad \rightarrow \quad \Theta(4^k)\mathsf{"}
```

 $\{1: c(f(0), f(0))\}$

 $\rightarrow_{\mathcal{R}_1} \{1/2 : \mathbf{c}(0, \mathbf{f}(0)), 1/2 : \mathbf{c}(\mathbf{f}(\mathbf{s}(0)), \mathbf{f}(0))\}$

```
\mathcal{R}_2: \mathsf{b}(x) \to \mathsf{c}(x,x) PAST
```

No

```
\mathcal{R}_1\colon \begin{array}{ccc} \mathsf{f}(x) & \to & \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) & \to & \{1:\mathsf{g}(x)\} \\ \text{"}\mathsf{g}(\mathsf{s}^k(x)) & \to & \Theta(4^k)\text{"} \end{array}
```

 $\{1: c(f(0), f(0))\}$

 $\rightarrow_{\mathcal{R}_1}$ {\(\frac{1}{2} : \mathbb{c}(0, \mathbf{f}(0)), \(\frac{1}{2} : \mathbb{c}(\mathbf{f}(s(0)), \mathbf{f}(0)) \)}

```
\mathcal{R}_2: \mathsf{b}(x) \to \mathsf{c}(x,x)
```

No

```
\mathcal{R}_1\colon \begin{array}{ccc} \mathsf{f}(x) & \to & \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) & \to & \{1:\mathsf{g}(x)\} \\ \text{"}\mathsf{g}(\mathsf{s}^k(x)) & \to & \Theta(4^k)\text{"} \end{array}
```

 $\{1: c(f(0), f(0))\}$

```
\mathcal{R}_2: \mathsf{b}(x) \to \mathsf{c}(x,x) PAST
```

```
 \begin{array}{ll} \rightarrow_{\mathcal{R}_1} & \{ {}^{1}\!/{}_2 : \mathbf{c}(\mathbf{0},\mathbf{f}(\mathbf{0})), {}^{1}\!/{}_2 : \mathbf{c}(\mathbf{f}(\mathbf{s}(\mathbf{0})),\mathbf{f}(\mathbf{0})) \} \\ \rightarrow_{\mathcal{R}_1} & \{ & \dots & , {}^{1}\!/{}_4 : \mathbf{c}(\mathbf{0},\mathbf{f}(\mathbf{0})), {}^{1}\!/{}_4 : \mathbf{c}(\mathbf{f}(\mathbf{s}^2(\mathbf{0})),\mathbf{f}(\mathbf{0})) \} \\ \rightarrow_{\mathcal{R}_1} & \{ & \dots & , & \dots & , {}^{1}\!/{}_8 : \mathbf{c}(\mathbf{0},\mathbf{f}(\mathbf{0})), {}^{1}\!/{}_8 : \mathbf{c}(\mathbf{f}(\mathbf{s}^3(\mathbf{0})),\mathbf{f}(\mathbf{0})) \} \\ & \mathbb{E}(\vec{\mu}) \geq {}^{1}\!/{}_2 \cdot 2^1 + {}^{1}\!/{}_4 \cdot 2^2 + {}^{1}\!/{}_8 \cdot 2^3 = \sum_{k=0}^{\infty} ({}^{1}\!/{}_2)^k \cdot 2^k = \sum_{k=0}^{\infty} 1 = \infty \end{array}
```

Disjoint Unions:

No

```
\mathcal{R}_1\colon \qquad \qquad \mathsf{f}(x) \quad \rightarrow \quad \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) \quad \rightarrow \quad \{1:\mathsf{g}(x)\} \\ \mathsf{"g}(\mathsf{s}^k(x)) \quad \rightarrow \quad \Theta(4^k)\mathsf{"}
```

```
\mathcal{R}_2: \mathsf{b}(x) \to \mathsf{c}(x,x) PAST
```

```
 \begin{cases} 1: \mathsf{c}(\mathsf{f}(0),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ {}^{1}\!/{}_2: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_2: \mathsf{c}(\mathsf{f}(\mathsf{s}(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \ldots, {}^{1}\!/{}_4: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_4: \mathsf{c}(\mathsf{f}(\mathsf{s}^2(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \ldots, {}^{1}\!/{}_4: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_4: \mathsf{c}(\mathsf{f}(\mathsf{s}^3(0)),\mathsf{f}(0)) \} \end{cases}   \mathbb{E}(\vec{\mu}) \geq {}^{1}\!/{}_2 \cdot 2^1 + {}^{1}\!/{}_4 \cdot 2^2 + {}^{1}\!/{}_8 \cdot 2^3 = \sum_{}^{\infty} ({}^{1}\!/{}_2)^k \cdot 2^k = \sum_{}^{\infty} 1 = \infty
```

Shared Constructor Systems:

Disjoint Unions: Yes (no details)

Disjoint Unions: Yes (no details)

Shared Constructor Systems:

Disjoint Unions:

Yes (no details)

Shared Constructor Systems:

$$\mathcal{R}_1$$
:
$$\begin{array}{ccc} \mathsf{f}(\mathsf{c}(x,y)) & \to & \{1:\mathsf{c}(\mathsf{f}(x),\mathsf{f}(y))\} \\ \mathsf{f}(0) & \to & \{1:0\} \end{array}$$

$$\mathcal{R}_2$$
:
$$\begin{aligned} \mathsf{g}(x) & \to & \{1/2 : \mathsf{g}(\mathsf{d}(x)), 3/4 : x\} \\ \mathsf{d}(x) & \to & \{1 : \mathsf{c}(x, x)\} \end{aligned}$$
 SAST

Disjoint Unions:

Yes (no details)

Shared Constructor Systems:

$$\mathcal{R}_1$$
:
$$\begin{array}{ccc} \mathsf{f}(\mathsf{c}(x,y)) & \to & \{1:\mathsf{c}(\mathsf{f}(x),\mathsf{f}(y))\} \\ \mathsf{f}(0) & \to & \{1:0\} \end{array}$$

$$\mathcal{R}_2$$
:
$$\begin{aligned} \mathsf{g}(x) &\to& \{1/2:\mathsf{g}(\mathsf{d}(x)), 3/4:x\} \\ \mathsf{d}(x) &\to& \{1:\mathsf{c}(x,x)\} \end{aligned}$$

Disjoint Unions:

Yes (no details)

Shared Constructor Systems:

No

$$\mathcal{R}_1$$
:
$$\begin{array}{ccc} \mathsf{f}(\mathsf{c}(x,y)) & \to & \{1:\mathsf{c}(\mathsf{f}(x),\mathsf{f}(y))\} \\ \mathsf{f}(0) & \to & \{1:0\} \end{array}$$

 $\mathcal{R}_2 \colon \qquad \qquad \mathsf{g}(x) \quad \to \quad \{1/2 : \mathsf{g}(\mathsf{d}(x)), 3/4 : x\} \\ \mathsf{d}(x) \quad \to \quad \{1 : \mathsf{c}(x,x)\} \qquad \qquad \mathsf{SAST}$

$$\{1:\mathsf{f}(\mathsf{g}(0))\}$$

Disjoint Unions:

Yes (no details)

Shared Constructor Systems:

$$\mathcal{R}_1 \colon \begin{array}{ccc} \mathcal{R}_1 \colon & & \text{SAST} \\ & \mathsf{f}(\mathsf{c}(x,y)) & \to & \{1 : \mathsf{c}(\mathsf{f}(x),\mathsf{f}(y))\} \\ & \mathsf{f}(0) & \to & \{1 : 0\} \end{array}$$

```
\mathcal{R}_2 \colon \\ \mathbf{g}(x) & \to & \{1/2 : \mathbf{g}(\mathbf{d}(x)), 3/4 : x\} \\ \mathbf{d}(x) & \to & \{1 : \mathbf{c}(x, x)\} \end{cases} \text{SAST}
```

$$\begin{array}{c} \{1:\mathsf{f}(\mathsf{g}(0))\}\\ \to_{\mathcal{R}_2}^k \qquad \{\ldots,(^1\!/2)^k:\mathsf{f}(\mathsf{d}^{k-1}(0)),\ldots\} \end{array}$$

Disjoint Unions:

Yes (no details)

Shared Constructor Systems:

$$\mathcal{R}_1: \\ \mathsf{f}(\mathsf{c}(x,y)) & \to & \{1:\mathsf{c}(\mathsf{f}(x),\mathsf{f}(y))\} \\ \mathsf{f}(0) & \to & \{1:0\} \end{cases}$$

```
\mathcal{R}_2:  \begin{aligned} \mathsf{g}(x) &\to & \{1/2 : \mathsf{g}(\mathsf{d}(x)), 3/4 : x\} \\ \mathsf{d}(x) &\to & \{1 : \mathsf{c}(x, x)\} \end{aligned}
```

```
 \begin{array}{ccc} & & \{1: \mathsf{f}(\mathsf{g}(0))\} \\ \to_{\mathcal{R}_2}^k & & \{\dots, (1/2)^k: \mathsf{f}(\mathsf{d}^{k-1}(0)), \dots\} \\ \to_{\mathcal{R}_2}^k & & \{\dots, (1/2)^k: \mathsf{f}(\mathsf{c}^{k-1}(0)), \dots\} \end{array}
```

Disjoint Unions:

Yes (no details)

Shared Constructor Systems:

$$\mathcal{R}_1: \qquad \qquad \mathsf{f}(\mathsf{c}(x,y)) \quad \to \quad \{1:\mathsf{c}(\mathsf{f}(x),\mathsf{f}(y))\} \\ \mathsf{f}(0) \quad \to \quad \{1:0\}$$

```
\mathcal{R}_2: \mathsf{g}(x) \to \{1/2 : \mathsf{g}(\mathsf{d}(x)), 3/4 : x\} \mathsf{d}(x) \to \{1 : \mathsf{c}(x, x)\}
```

```
 \begin{array}{ccc} & \{1:\mathsf{f}(\mathsf{g}(0))\} \\ \to_{\mathcal{R}_2}^k & \{\ldots, (1/2)^k:\mathsf{f}(\mathsf{d}^{k-1}(0)), \ldots\} \\ \to_{\mathcal{R}_2}^k & \{\ldots, (1/2)^k:\mathsf{f}(\mathsf{c}^{k-1}(0)), \ldots\} \\ \to_{\mathcal{R}_1}^{2^{k-1}-1} & \{\ldots, (1/2)^k:\mathsf{c}^{k-1}(0) & , \ldots\} \end{array}
```

Disjoint Unions:

Yes (no details)

Shared Constructor Systems:

No

$$\mathcal{R}_1: \qquad \qquad \mathsf{f}(\mathsf{c}(x,y)) \quad \to \quad \{1:\mathsf{c}(\mathsf{f}(x),\mathsf{f}(y))\} \\ \mathsf{f}(0) \quad \to \quad \{1:0\}$$

```
\mathcal{R}_2:  \begin{aligned} \mathsf{g}(x) &\to &\{1/2:\mathsf{g}(\mathsf{d}(x)), 3/4:x\} \\ \mathsf{d}(x) &\to &\{1:\mathsf{c}(x,x)\} \end{aligned}
```

```
 \begin{array}{ll} & \{1:\mathsf{f}(\mathsf{g}(0))\} \\ \to_{\mathcal{R}_2}^k & \{\ldots, (1/2)^k:\mathsf{f}(\mathsf{d}^{k-1}(0)), \ldots\} \\ \to_{\mathcal{R}_2}^k & \{\ldots, (1/2)^k:\mathsf{f}(\mathsf{c}^{k-1}(0)), \ldots\} \\ \to_{\mathcal{R}_1}^{2^{k-1}-1} & \{\ldots, (1/2)^k:\mathsf{c}^{k-1}(0) & , \ldots\} \end{array}
```

 $\mathbb{E}(\vec{\mu})$

Disjoint Unions:

Yes (no details)

Shared Constructor Systems:

$$\mathcal{R}_1: \begin{array}{ccc} \mathcal{R}_1: & & \text{SAST} \\ & \mathsf{f}(\mathsf{c}(x,y)) & \to & \{1:\mathsf{c}(\mathsf{f}(x),\mathsf{f}(y))\} \\ & & \mathsf{f}(0) & \to & \{1:0\} \end{array}$$

$$\mathcal{R}_2$$
:
$$\begin{array}{ccc} \mathsf{g}(x) & \to & \{1/2 : \mathsf{g}(\mathsf{d}(x)), 3/4 : x\} \\ \mathsf{d}(x) & \to & \{1 : \mathsf{c}(x, x)\} \end{array}$$

$$\begin{cases} 1: \mathsf{f}(\mathsf{g}(0)) \} \\ \to_{\mathcal{R}_2}^k & \{ \dots, (1/2)^k : \mathsf{f}(\mathsf{d}^{k-1}(0)), \dots \} \\ \to_{\mathcal{R}_2}^k & \{ \dots, (1/2)^k : \mathsf{f}(\mathsf{c}^{k-1}(0)), \dots \} \\ \to_{\mathcal{R}_1}^{2^{k-1}-1} & \{ \dots, (1/2)^k : \mathsf{c}^{k-1}(0) & \dots \} \end{cases}$$

$$\mathbb{E}(\vec{\mu}) \ge \frac{1}{2} \cdot 1 + (1/2)^2 \cdot 2 + (1/2)^3 \cdot 2^2$$

Disjoint Unions:

Yes (no details)

Shared Constructor Systems:

$$\mathcal{R}_1: \\ \mathsf{f}(\mathsf{c}(x,y)) & \to & \{1:\mathsf{c}(\mathsf{f}(x),\mathsf{f}(y))\} \\ \mathsf{f}(0) & \to & \{1:0\} \end{cases}$$

$$\mathcal{R}_2$$
: $\mathbf{g}(x) \rightarrow \{1/2 : \mathbf{g}(\mathbf{d}(x)), 3/4 : x\}$ $\mathbf{d}(x) \rightarrow \{1 : \mathbf{c}(x, x)\}$

$$\begin{cases} 1: \mathsf{f}(\mathsf{g}(0)) \} \\ \to_{\mathcal{R}_2}^k & \{ \dots, (^{1\!/2})^k : \mathsf{f}(\mathsf{d}^{k-1}(0)), \dots \} \\ \to_{\mathcal{R}_2}^k & \{ \dots, (^{1\!/2})^k : \mathsf{f}(\mathsf{c}^{k-1}(0)), \dots \} \\ \to_{\mathcal{R}_1}^{2^{k-1}-1} & \{ \dots, (^{1\!/2})^k : \mathsf{c}^{k-1}(0) & , \dots \} \end{cases} \\ \mathbb{E}(\vec{\mu}) \geq \frac{1}{2} \cdot 1 + (^{1\!/2})^2 \cdot 2 + (^{1\!/2})^3 \cdot 2^2 = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \cdot 2^n$$

Disjoint Unions:

Yes (no details)

Shared Constructor Systems:

$$\mathcal{R}_1$$
:
$$\begin{array}{ccc} \mathsf{f}(\mathsf{c}(x,y)) & \to & \{1:\mathsf{c}(\mathsf{f}(x),\mathsf{f}(y))\} \\ \mathsf{f}(0) & \to & \{1:0\} \end{array}$$

$$\mathcal{R}_2\colon \\ \mathbf{g}(x) & \to & \{1/2: \mathbf{g}(\mathbf{d}(x)), 3/4: x\} \\ \mathbf{d}(x) & \to & \{1: \mathbf{c}(x, x)\} \end{cases} \text{SAST}$$

$$\begin{cases} \{1: \mathsf{f}(\mathsf{g}(0))\} \\ \to_{\mathcal{R}_2}^k & \{\dots, (^{1}\!/2)^k: \mathsf{f}(\mathsf{d}^{k-1}(0)), \dots\} \\ \to_{\mathcal{R}_2}^k & \{\dots, (^{1}\!/2)^k: \mathsf{f}(\mathsf{c}^{k-1}(0)), \dots\} \\ \to_{\mathcal{R}_1}^{2^{k-1}-1} & \{\dots, (^{1}\!/2)^k: \mathsf{c}^{k-1}(0) & , \dots\} \end{cases}$$

$$\mathbb{E}(\vec{\mu}) \geq \frac{1}{2} \cdot 1 + (^{1}\!/2)^2 \cdot 2 + (^{1}\!/2)^3 \cdot 2^2 = \sum_{r=0}^{\infty} \frac{1}{2^{n+1}} \cdot 2^n = \sum_{r=0}^{\infty} \frac{1}{2}$$

Disjoint Unions:

Yes (no details)

Shared Constructor Systems:

$$\mathcal{R}_1$$
:
$$\begin{array}{ccc} \mathsf{f}(\mathsf{c}(x,y)) & \to & \{1:\mathsf{c}(\mathsf{f}(x),\mathsf{f}(y))\} \\ \mathsf{f}(0) & \to & \{1:0\} \end{array}$$

$$\mathcal{R}_2$$
:
$$\begin{array}{ccc} \mathsf{g}(x) & \to & \{1/2 : \mathsf{g}(\mathsf{d}(x)), 3/4 : x\} \\ \mathsf{d}(x) & \to & \{1 : \mathsf{c}(x, x)\} \end{array}$$

$$\begin{cases} \{1: \mathsf{f}(\mathsf{g}(0))\} \\ \to_{\mathcal{R}_2}^k & \{\dots, (^{1}\!/2)^k: \mathsf{f}(\mathsf{d}^{k-1}(0)), \dots\} \\ \to_{\mathcal{R}_2}^k & \{\dots, (^{1}\!/2)^k: \mathsf{f}(\mathsf{c}^{k-1}(0)), \dots\} \\ \to_{\mathcal{R}_1}^{2^{k-1}-1} & \{\dots, (^{1}\!/2)^k: \mathsf{c}^{k-1}(0) & , \dots\} \end{cases}$$

$$\mathbb{E}(\vec{\mu}) \geq \frac{1}{2} \cdot 1 + (^{1}\!/2)^2 \cdot 2 + (^{1}\!/2)^3 \cdot 2^2 = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \cdot 2^n = \sum_{n=0}^{\infty} \frac{1}{2} = \infty$$

Modularity for PTRSs

Innermost Rewriting with	AST	PAST	SAST
Disjoint Unions	Yes	No	Yes
Shared Constructors	Yes	No	No
Hierarchical Systems	???	No	???

Overview

1. Introduce Probabilistic Notions of Termination:

$$\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$$

- 2. Modularity of AST, PAST, and SAST
- 3. PAST \approx SAST for PTRSs

Overview

1. Introduce Probabilistic Notions of Termination:

 $\mathtt{SAST} \subsetneq \mathtt{PAST} \subsetneq \mathtt{AST}$

- 2. Modularity of AST, PAST, and SAST
- 3. PAST \approx SAST for PTRSs

 \mathcal{R}_1 : $\begin{aligned} \mathsf{f}(x) &\to& \{1/2:\mathsf{f}(\mathsf{s}(x)),1/2:0\} \\ \mathsf{f}(x) &\to& \{1:\mathsf{g}(x)\} \\ \mathsf{"g}(\mathsf{s}^k(x)) &\to& \Theta(4^k) \end{aligned}$


```
\mathcal{R}_1\colon \\ \begin{array}{ccc} \mathsf{f}(x) & \to & \{{}^1\!/{}_2:\mathsf{f}(\mathsf{s}(x)),{}^1\!/{}_2:0\} \\ \mathsf{f}(x) & \to & \{1:\mathsf{g}(x)\} \\ \text{"}\mathsf{g}(\mathsf{s}^k(x)) & \to & \Theta(4^k)\text{"} \end{array}
```

Consider \mathcal{R}_1 with an additional $c(\circ, \circ)$:


```
\mathcal{R}_1: \begin{array}{ccc} \mathsf{f}(x) & \to & \{{}^1\!/2:\mathsf{f}(\mathsf{s}(x)),{}^1\!/2:0\} \\ & \mathsf{f}(x) & \to & \{1:\mathsf{g}(x)\} \\ & \text{``}\mathsf{g}(\mathsf{s}^k(x)) & \to & \Theta(4^k)\text{''} \end{array}
```

Consider \mathcal{R}_1 with an additional $c(\circ, \circ)$:

```
 \begin{cases} 1: \mathsf{c}(\mathsf{f}(0),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ {}^{1}\!/{}_2: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_2: \mathsf{c}(\mathsf{f}(\mathsf{s}(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \dots, {}^{1}\!/{}_4: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_4: \mathsf{c}(\mathsf{f}(\mathsf{s}^2(0)),\mathsf{f}(0)) \} \\ \to_{\mathcal{R}_1} & \{ \dots, {}^{1}\!/{}_4: \mathsf{c}(0,\mathsf{f}(0)), {}^{1}\!/{}_4: \mathsf{c}(\mathsf{f}(\mathsf{s}^2(0)),\mathsf{f}(0)) \} \\ & \mathbb{E}(\vec{\mu}) \geq {}^{1}\!/{}_2 \cdot 2^1 + {}^{1}\!/{}_4 \cdot 2^2 + {}^{1}\!/{}_8 \cdot 2^3 = \sum_{k=0}^{\infty} ({}^{1}\!/{}_2)^k \cdot 2^k = \sum_{k=0}^{\infty} 1 = \infty \end{cases}
```

Theorem: Equivalence of PAST and SAST

If a PTRS \mathcal{P} has only finitely many rules and the corresponding signature contains a function symbol of at least arity 2, then:

$$\mathcal{P}$$
 is PAST $\Longleftrightarrow \mathcal{P}$ is SAST

Theorem: Equivalence of PAST and SAST

If a PTRS \mathcal{P} has only finitely many rules and the corresponding signature contains a function symbol of at least arity 2, then:

$$\mathcal{P}$$
 is PAST $\Longleftrightarrow \mathcal{P}$ is SAST

Theorem: Equivalence of PAST and SAST

If a PTRS \mathcal{P} has only finitely many rules and the corresponding signature contains a function symbol of at least arity 2, then:

$$\mathcal{P}$$
 is PAST $\Longleftrightarrow \mathcal{P}$ is SAST

Idea:

1. Let \mathcal{R} be PAST but not SAST

Theorem: Equivalence of PAST and SAST

If a PTRS \mathcal{P} has only finitely many rules and the corresponding signature contains a function symbol of at least arity 2, then:

$$\mathcal{P}$$
 is PAST $\Longleftrightarrow \mathcal{P}$ is SAST

- 1. Let \mathcal{R} be PAST but not SAST
- 2. Let t be a term such that $\mathbb{E}(\mu_t)$ is unbounded

Theorem: Equivalence of PAST and SAST

If a PTRS \mathcal{P} has only finitely many rules and the corresponding signature contains a function symbol of at least arity 2, then:

$$\mathcal{P}$$
 is PAST $\Longleftrightarrow \mathcal{P}$ is SAST

- 1. Let \mathcal{R} be PAST but not SAST
- 2. Let t be a term such that $\mathbb{E}(\mu_t)$ is unbounded
- 3. Start with $\mathsf{c}(t,t)$ and create a sequence $\mu_{\mathsf{c}(t,t)}$

Theorem: Equivalence of PAST and SAST

If a PTRS \mathcal{P} has only finitely many rules and the corresponding signature contains a function symbol of at least arity 2, then:

$$\mathcal{P}$$
 is PAST $\Longleftrightarrow \mathcal{P}$ is SAST

- 1. Let \mathcal{R} be PAST but not SAST
- 2. Let t be a term such that $\mathbb{E}(\mu_t)$ is unbounded
- 3. Start with $\mathbf{c}(t,t)$ and create a sequence $\mu_{\mathbf{c}(t,t)}$
- 4. Use first t to create infinitely many copies of second t

Theorem: Equivalence of PAST and SAST

If a PTRS \mathcal{P} has only finitely many rules and the corresponding signature contains a function symbol of at least arity 2, then:

$$\mathcal{P}$$
 is PAST $\Longleftrightarrow \mathcal{P}$ is SAST

- 1. Let \mathcal{R} be PAST but not SAST
- 2. Let t be a term such that $\mathbb{E}(\mu_t)$ is unbounded
- 3. Start with $\mathbf{c}(t,t)$ and create a sequence $\mu_{\mathbf{c}(t,t)}$
- 4. Use first t to create infinitely many copies of second t
- 5. $\mathbb{E}(\mu_{\mathsf{c}(t,t)}) = \infty$ as before \Rightarrow not PAST

Summary

▶ Definition and Differences between AST, PAST, and SAST SAST \subsetneq PAST \subsetneq AST

Summary

- Definition and Differences between AST, PAST, and SAST SAST ⊆ PAST ⊆ AST
- ► PAST and SAST are very closely related for rewriting

Theorem: Equivalence of PAST and SAST

If a PTRS \mathcal{P} has only finitely many rules and the corresponding signature contains a function symbol of at least arity 2, then:

$$\mathcal{P}$$
 is PAST $\Longleftrightarrow \mathcal{P}$ is SAST

Summary

- ▶ Definition and Differences between AST, PAST, and SAST SAST \subsetneq PAST \subsetneq AST
- ▶ PAST and SAST are very closely related for rewriting

Theorem: Equivalence of PAST and SAST

If a PTRS \mathcal{P} has only finitely many rules and the corresponding signature contains a function symbol of at least arity 2, then:

$$\mathcal{P}$$
 is PAST $\Longleftrightarrow \mathcal{P}$ is SAST

Modularity

	AST	PAST	SAST
Disjoint Unions	Yes	No	Yes
Shared Constructors	Yes	No	No