
TRS PTRS Summary

Analyzing Almost-Sure Termination of
Probabilistic Term Rewriting via Innermost

Almost-Sure Termination

Jan-Christoph Kassing
Research Group Computer Science 2

“Programming Languages and Verification”

February 2023

1/20



TRS PTRS Summary

Termination of TRSs
Rlen: len(nil) → O

len(cons(x , y)) → s(len(y))

0
next

0
next

0

→Rlen

→Rlen

→Rlen

→Rlen s(s(s(O)))

2/20



TRS PTRS Summary

Termination of TRSs
Rlen: len(nil) → O

len(cons(x , y)) → s(len(y))

0
next

0
next

0

→Rlen

→Rlen

→Rlen

→Rlen s(s(s(O)))

2/20



TRS PTRS Summary

Termination of TRSs
Rlen: len(nil) → O

len(cons(x , y)) → s(len(y))

0
next

0
next

0

len(cons(O, cons(O, cons(O, nil))))

→Rlen

→Rlen

→Rlen

→Rlen s(s(s(O)))

2/20



TRS PTRS Summary

Termination of TRSs
Rlen: len(nil) → O

len(cons(x , y)) → s(len(y))

0
next

0
next

0

len(cons(O, cons(O, cons(O, nil))))
→Rlen s(len(cons(O, cons(O, nil))))

→Rlen

→Rlen

→Rlen s(s(s(O)))

2/20



TRS PTRS Summary

Termination of TRSs
Rlen: len(nil) → O

len(cons(x , y)) → s(len(y))

0
next

0
next

0

len(cons(O, cons(O, cons(O, nil))))
→Rlen s(len(cons(O, cons(O, nil))))
→Rlen s(s(len(cons(O, nil))))

→Rlen

→Rlen s(s(s(O)))

2/20



TRS PTRS Summary

Termination of TRSs
Rlen: len(nil) → O

len(cons(x , y)) → s(len(y))

0
next

0
next

0

len(cons(O, cons(O, cons(O, nil))))
→Rlen s(len(cons(O, cons(O, nil))))
→Rlen s(s(len(cons(O, nil))))
→Rlen s(s(s(len(nil))))

→Rlen s(s(s(O)))

2/20



TRS PTRS Summary

Termination of TRSs
Rlen: len(nil) → O

len(cons(x , y)) → s(len(y))

0
next

0
next

0

len(cons(O, cons(O, cons(O, nil))))
→Rlen s(len(cons(O, cons(O, nil))))
→Rlen s(s(len(cons(O, nil))))
→Rlen s(s(s(len(nil))))
→Rlen s(s(s(O)))

2/20



TRS PTRS Summary

Termination of TRSs
Rlen: len(nil) → O

len(cons(x , y)) → s(len(y))

0
next

0
next

0

len(cons(O, cons(O, cons(O, nil))))
→Rlen s(len(cons(O, cons(O, nil))))
→Rlen s(s(len(cons(O, nil))))
→Rlen s(s(s(len(nil))))
→Rlen s(s(s(O)))

R is terminating iff there is no infinite evaluation t0 →R t1 →R . . .

2/20



TRS PTRS Summary

Where do we use TRSs?

Turing complete programming language

Backend language of tools for the analysis of programming languages

Java

Prolog

C

Haskell

Symbolic
Execution

Graph

TRS
or

ITS

Termination

ComplexityComplexity

TRS: especially good for the analysis of algorithms concerning
algebraic/user-defined data structures (lists, graphs, etc.)

3/20



TRS PTRS Summary

Where do we use TRSs?

Turing complete programming language

Backend language of tools for the analysis of programming languages

Java

Prolog

C

Haskell

Symbolic
Execution

Graph

TRS
or

ITS

Termination

ComplexityComplexity

TRS: especially good for the analysis of algorithms concerning
algebraic/user-defined data structures (lists, graphs, etc.)

3/20



TRS PTRS Summary

Where do we use TRSs?

Turing complete programming language
Backend language of tools for the analysis of programming languages

Java

Prolog

C

Haskell

Symbolic
Execution

Graph

TRS
or

ITS

Termination

ComplexityComplexity

TRS: especially good for the analysis of algorithms concerning
algebraic/user-defined data structures (lists, graphs, etc.)

3/20



TRS PTRS Summary

Where do we use TRSs?

Turing complete programming language
Backend language of tools for the analysis of programming languages

Java

Prolog

C

Haskell

Symbolic
Execution

Graph

TRS
or

ITS

Termination

ComplexityComplexity

TRS: especially good for the analysis of algorithms concerning
algebraic/user-defined data structures (lists, graphs, etc.)

3/20



TRS PTRS Summary

Where do we use TRSs?

Turing complete programming language
Backend language of tools for the analysis of programming languages

Java

Prolog

C

Haskell

Symbolic
Execution

Graph

TRS
or

ITS

Termination

ComplexityComplexity

TRS: especially good for the analysis of algorithms concerning
algebraic/user-defined data structures (lists, graphs, etc.)

3/20



TRS PTRS Summary

Where do we use TRSs?

Turing complete programming language
Backend language of tools for the analysis of programming languages

Java

Prolog

C

Haskell

Symbolic
Execution

Graph

TRS
or

ITS

Termination

ComplexityComplexity

TRS: especially good for the analysis of algorithms concerning
algebraic/user-defined data structures (lists, graphs, etc.)

3/20



TRS PTRS Summary

Where do we use TRSs?

Turing complete programming language
Backend language of tools for the analysis of programming languages

Java

Prolog

C

Haskell

Symbolic
Execution

Graph

TRS
or

ITS

Termination

ComplexityComplexity

TRS: especially good for the analysis of algorithms concerning
algebraic/user-defined data structures (lists, graphs, etc.)

3/20



TRS PTRS Summary

Where do we use TRSs?

Turing complete programming language
Backend language of tools for the analysis of programming languages

Java

Prolog

C

Haskell

Symbolic
Execution

Graph

TRS
or

ITS

Termination

ComplexityComplexity

TRS: especially good for the analysis of algorithms concerning
algebraic/user-defined data structures (lists, graphs, etc.)

3/20



TRS PTRS Summary

Where do we use TRSs?

Turing complete programming language
Backend language of tools for the analysis of programming languages

Java

Prolog

C

Haskell

Symbolic
Execution

Graph

TRS
or

ITS

Termination

ComplexityComplexity

TRS: especially good for the analysis of algorithms concerning
algebraic/user-defined data structures (lists, graphs, etc.)

3/20



TRS PTRS Summary

Non-Determinism and Evaluation Strategies
Rplus : plus(O, y) → y

plus(s(x), y) → s(plus(x , y))

plus(s(O), plus(O,O))plus(s(O), plus(O,O))plus(s(O), plus(O,O))

s(plus(O, plus(O,O)))s(plus(O, plus(O,O)))s(plus(O, plus(O,O)))

s(plus(O,O))s(plus(O,O))

plus(s(O),O)plus(s(O),O)

s(plus(O,O))s(plus(O,O))

s(O) s(O)s(O)

s(plus(O,O))s(plus(O,O))

Innermost evaluation: always use an innermost reducible expression

4/20



TRS PTRS Summary

Non-Determinism and Evaluation Strategies
Rplus : plus(O, y) → y

plus(s(x), y) → s(plus(x , y))

plus(s(O), plus(O,O))

plus(s(O), plus(O,O))plus(s(O), plus(O,O))

s(plus(O, plus(O,O)))s(plus(O, plus(O,O)))s(plus(O, plus(O,O)))

s(plus(O,O))s(plus(O,O))

plus(s(O),O)plus(s(O),O)

s(plus(O,O))s(plus(O,O))

s(O) s(O)s(O)

s(plus(O,O))s(plus(O,O))

Innermost evaluation: always use an innermost reducible expression

4/20



TRS PTRS Summary

Non-Determinism and Evaluation Strategies
Rplus : plus(O, y) → y

plus(s(x), y) → s(plus(x , y))

plus(s(O), plus(O,O))

plus(s(O), plus(O,O))

plus(s(O), plus(O,O))

s(plus(O, plus(O,O)))

s(plus(O, plus(O,O)))s(plus(O, plus(O,O)))

s(plus(O,O))s(plus(O,O))

plus(s(O),O)plus(s(O),O)

s(plus(O,O))s(plus(O,O))

s(O) s(O)s(O)

s(plus(O,O))s(plus(O,O))

Innermost evaluation: always use an innermost reducible expression

4/20



TRS PTRS Summary

Non-Determinism and Evaluation Strategies
Rplus : plus(O, y) → y

plus(s(x), y) → s(plus(x , y))

plus(s(O), plus(O,O))

plus(s(O), plus(O,O))plus(s(O), plus(O,O))

s(plus(O, plus(O,O)))

s(plus(O, plus(O,O)))

s(plus(O, plus(O,O)))

s(plus(O,O))

s(plus(O,O))

plus(s(O),O)plus(s(O),O)

s(plus(O,O))s(plus(O,O))

s(O) s(O)s(O)

s(plus(O,O))s(plus(O,O))

Innermost evaluation: always use an innermost reducible expression

4/20



TRS PTRS Summary

Non-Determinism and Evaluation Strategies
Rplus : plus(O, y) → y

plus(s(x), y) → s(plus(x , y))

plus(s(O), plus(O,O))

plus(s(O), plus(O,O))plus(s(O), plus(O,O))

s(plus(O, plus(O,O)))

s(plus(O, plus(O,O)))s(plus(O, plus(O,O)))

s(plus(O,O))

s(plus(O,O))

plus(s(O),O)plus(s(O),O)

s(plus(O,O))s(plus(O,O))

s(O)

s(O)s(O)

s(plus(O,O))s(plus(O,O))

Innermost evaluation: always use an innermost reducible expression

4/20



TRS PTRS Summary

Non-Determinism and Evaluation Strategies
Rplus : plus(O, y) → y

plus(s(x), y) → s(plus(x , y))

plus(s(O), plus(O,O))plus(s(O), plus(O,O))

plus(s(O), plus(O,O))

s(plus(O, plus(O,O)))

s(plus(O, plus(O,O)))s(plus(O, plus(O,O)))

s(plus(O,O))

s(plus(O,O))

plus(s(O),O)

plus(s(O),O)

s(plus(O,O))s(plus(O,O))

s(O)

s(O)s(O)

s(plus(O,O))s(plus(O,O))

Innermost evaluation: always use an innermost reducible expression

4/20



TRS PTRS Summary

Non-Determinism and Evaluation Strategies
Rplus : plus(O, y) → y

plus(s(x), y) → s(plus(x , y))

plus(s(O), plus(O,O))

plus(s(O), plus(O,O))plus(s(O), plus(O,O))

s(plus(O, plus(O,O)))

s(plus(O, plus(O,O)))s(plus(O, plus(O,O)))

s(plus(O,O))

s(plus(O,O))

plus(s(O),O)

plus(s(O),O)

s(plus(O,O))

s(plus(O,O))

s(O)

s(O)s(O)

s(plus(O,O))s(plus(O,O))

Innermost evaluation: always use an innermost reducible expression

4/20



TRS PTRS Summary

Non-Determinism and Evaluation Strategies
Rplus : plus(O, y) → y

plus(s(x), y) → s(plus(x , y))

plus(s(O), plus(O,O))

plus(s(O), plus(O,O))plus(s(O), plus(O,O))

s(plus(O, plus(O,O)))

s(plus(O, plus(O,O)))s(plus(O, plus(O,O)))

s(plus(O,O))

s(plus(O,O))

plus(s(O),O)

plus(s(O),O)

s(plus(O,O))

s(plus(O,O))

s(O)

s(O)

s(O)

s(plus(O,O))s(plus(O,O))

Innermost evaluation: always use an innermost reducible expression

4/20



TRS PTRS Summary

Non-Determinism and Evaluation Strategies
Rplus : plus(O, y) → y

plus(s(x), y) → s(plus(x , y))

plus(s(O), plus(O,O))

plus(s(O), plus(O,O))plus(s(O), plus(O,O))

s(plus(O, plus(O,O)))

s(plus(O, plus(O,O)))

s(plus(O, plus(O,O)))

s(plus(O,O))

s(plus(O,O))

plus(s(O),O)

plus(s(O),O)

s(plus(O,O))

s(plus(O,O))

s(O)

s(O)

s(O)

s(plus(O,O))

s(plus(O,O))

Innermost evaluation: always use an innermost reducible expression

4/20



TRS PTRS Summary

Non-Determinism and Evaluation Strategies
Rplus : plus(O, y) → y

plus(s(x), y) → s(plus(x , y))

plus(s(O), plus(O,O))

plus(s(O), plus(O,O))plus(s(O), plus(O,O))

s(plus(O, plus(O,O)))

s(plus(O, plus(O,O)))s(plus(O, plus(O,O)))

s(plus(O,O))

s(plus(O,O))

plus(s(O),O)

plus(s(O),O)

s(plus(O,O))

s(plus(O,O))

s(O) s(O)s(O)

s(plus(O,O))

s(plus(O,O))

Innermost evaluation: always use an innermost reducible expression

4/20



TRS PTRS Summary

Non-Determinism and Evaluation Strategies
Rplus : plus(O, y) → y

plus(s(x), y) → s(plus(x , y))

plus(s(O), plus(O,O))plus(s(O), plus(O,O))

plus(s(O), plus(O,O))

s(plus(O, plus(O,O)))

s(plus(O, plus(O,O)))s(plus(O, plus(O,O)))

s(plus(O,O))

s(plus(O,O))

plus(s(O),O)

plus(s(O),O)

s(plus(O,O))

s(plus(O,O))

s(O) s(O)s(O)

s(plus(O,O))

s(plus(O,O))

Innermost evaluation: always use an innermost reducible expression
4/20



TRS PTRS Summary

Innermost Termination vs. Termination
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→R1 f(a, , g(a, b))
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But Innermost Terminating:

f(a, b, ) i→R1
i→R1 f(a, a, a)← normal form

f(a, b, ) i→R1
i→R1 f(b, b, b)← normal form
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Overlapping

Overlapping

If there exists two rules ℓ1 → r1, ℓ2 → r2 of R and some non-variable
position ρ of ℓ2 such that ℓ1 and ℓ2|ρ are unifiable, then R is overlapping.

R2: → f(a)
→ b

f

a

a
←→

f

a

mgu σ = ∅ = id
→ R2 is overlapping.

7/20



TRS PTRS Summary

Overlapping
Overlapping
If there exists two rules ℓ1 → r1, ℓ2 → r2 of R

and some non-variable
position ρ of ℓ2 such that ℓ1 and ℓ2|ρ are unifiable, then R is overlapping.

R2: → f(a)
→ b

f

a

a
←→

f

a

mgu σ = ∅ = id
→ R2 is overlapping.

7/20



TRS PTRS Summary

Overlapping
Overlapping
If there exists two rules ℓ1 → r1, ℓ2 → r2 of R and some non-variable
position ρ of ℓ2 such that ℓ1 and ℓ2|ρ are unifiable, then R is overlapping.

R2: → f(a)
→ b

f

a

a
←→

f

a

mgu σ = ∅ = id
→ R2 is overlapping.

7/20



TRS PTRS Summary

Overlapping
Overlapping
If there exists two rules ℓ1 → r1, ℓ2 → r2 of R and some non-variable
position ρ of ℓ2 such that ℓ1 and ℓ2|ρ are unifiable, then R is overlapping.

R2: f(a) → f(a)
a → b

f

a

a
←→

f

a

mgu σ = ∅ = id
→ R2 is overlapping.

7/20



TRS PTRS Summary

Overlapping
Overlapping
If there exists two rules ℓ1 → r1, ℓ2 → r2 of R and some non-variable
position ρ of ℓ2 such that ℓ1 and ℓ2|ρ are unifiable, then R is overlapping.

R2: f(a) → f(a)
a → b

f

a

a
←→

f

a

mgu σ = ∅ = id
→ R2 is overlapping.

7/20



TRS PTRS Summary

Overlapping
Overlapping
If there exists two rules ℓ1 → r1, ℓ2 → r2 of R and some non-variable
position ρ of ℓ2 such that ℓ1 and ℓ2|ρ are unifiable, then R is overlapping.

R2: f(a) → f(a)
a → b

f

a

a

←→
f

a

mgu σ = ∅ = id
→ R2 is overlapping.

7/20



TRS PTRS Summary

Overlapping
Overlapping
If there exists two rules ℓ1 → r1, ℓ2 → r2 of R and some non-variable
position ρ of ℓ2 such that ℓ1 and ℓ2|ρ are unifiable, then R is overlapping.

R2: f(a) → f(a)
a → b

f

a

a
←→

f

a

mgu σ = ∅ = id
→ R2 is overlapping.

7/20



TRS PTRS Summary

Overlapping
Overlapping
If there exists two rules ℓ1 → r1, ℓ2 → r2 of R and some non-variable
position ρ of ℓ2 such that ℓ1 and ℓ2|ρ are unifiable, then R is overlapping.

R2: f(a) → f(a)
a → b

f

a

a
←→

f

a

mgu σ = ∅ = id
→ R2 is overlapping.

7/20



TRS PTRS Summary

Overlapping
Overlapping
If there exists two rules ℓ1 → r1, ℓ2 → r2 of R and some non-variable
position ρ of ℓ2 such that ℓ1 and ℓ2|ρ are unifiable, then R is overlapping.

R2: f(a) → f(a)
a → b

f

a

a
←→

f

a

mgu σ = ∅ = id

→ R2 is overlapping.

7/20



TRS PTRS Summary

Overlapping
Overlapping
If there exists two rules ℓ1 → r1, ℓ2 → r2 of R and some non-variable
position ρ of ℓ2 such that ℓ1 and ℓ2|ρ are unifiable, then R is overlapping.

R2: f(a) → f(a)
a → b

f

a

a
←→

f

a

mgu σ = ∅ = id
→ R2 is overlapping.

7/20



TRS PTRS Summary

Overlapping cont.
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g(x , y) → x
g(x , y) → y
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TRS PTRS Summary

Overlapping cont.
non-overlapping (Idea)
In a term at a certain position can only be a single rewrite step possible
and rewriting at another position does not interfere with this possibility

Rplus :

→ Rplus is non-overlapping.

plus(s(O), plus(O,O))

plusplus

ss Oplusplus

O

OO O
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TRS PTRS Summary

Property for Equality
Theorem
If R is non-overlapping then:

R is innermost terminating iff R is terminating.

Proof by contradiction: Let R be: non-overlapping, innermost
terminating, but not (fully) terminating
Then there exists an infinite rewrite sequence

t0 →R t1 →R t2 →R . . .

W.l.o.G. we assume that we always rewrite at the lowest possible position
⇒ there exists a step tN →R tN+1 that is not an innermost step
(tN ̸

i→R tN+1) performed at some position π

Due to minimality rewriting tN
τ→R sN at a position τ below π can not

start an infinite evaluation
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TRS PTRS Summary

Proof cont.

From
tN →R tN+1 →R tN+2 →R . . .

construct infinite evaluation

tN
τ→R sN →R sN+1 →R sN+2 →R . . .
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Proof cont.

Rewriting possibilities:
1. Rewriting at an orthogonal position
2. Rewriting at a position above
3. Rewriting the colored position

sNtN
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TRS PTRS Summary

Termination of PTRSs
Slen: len(nil) → {1/2 : O, 1/2 : len(nil)}

len(cons(x , y)) → {1/2 : s(len(y)), 1/2 : len(cons(x , y))}

Computation of len(nil):

{1 :}

|µ0| = 0

⇒Slen {1/2 :, 1/2 : O}

|µ1| = 1/2

⇒Slen {1/4 :, 1/4 : O, 1/2 : O}

|µ2| = 3/4

⇒Slen . . .

S is terminating iff there is no infinite evaluation µ0 ⇒S µ1 ⇒S . . .

Slen is not terminating
S is almost-surely terminating (AST) iff limk→∞ |µk | = 1 for every infinite
evaluation µ0 ⇒S µ1 ⇒S . . .

Slen is AST
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Innermost AST vs. (full) AST
S2: f(a) → {1 : f(a)}

a → {1 : b}

Not AST:

{1 :}⇒S2 {1 :}⇒S2 . . .

But Innermost AST:

{1 : f()} i
⇒S2 {1 : f(b)} ← normal form
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TRS PTRS Summary

Properties for Equality of Termination

Does non-overlapping still suffice?

→ No!

S2: g → {3/4 : f(g), 1/4 : ⊥}
f(x) → {1 : c(x , x)}

Not AST: directly performing the f-rule to duplicate the g’s results in

S3: g → {3/4 : c(g, g), 1/4 : ⊥}

→ Biased random walk with p = 3/4 > 1/2, hence not AST.
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µ1 : 3/4 : f(g) 1/4 : ⊥

µ2 : (3/4)2 : f(f(g))

µ3 : (3/4)3 : f(f(f(g))) . . .

. . . . . .

lim
k→∞

|µk |

=

+ + + . . . =
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i=0

1/4 · (3/4)i = 1
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TRS PTRS Summary

Duplicating
Duplicating

If there exists a rule ℓ→ r of R such that a variable occurs more often in
the right-hand side r than in the left-hand side ℓ, then R is duplicating.

S2: g → {3/4 : f(g), 1/4 : ⊥}

→ S2 is duplicating.
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Jan-Christoph Kassing

Jan-Christoph Kassing
This also needs left-linearity. I have also developed a way to get rid of the left-linearity but this was not explained in this talk.

Left-linearity means that every variable can only occur once in the left-hand side of each rewrite rule.



Jan-Christoph Kassing
The minimality criterion does not work in the probabilistic setting. Hence, the proof is a bit different at the beginning.
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