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@ TRS: especially good for the analysis of algorithms concerning
algebraic/user-defined data structures (lists, graphs, etc.)
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Then there exists an infinite rewrite sequence

to >R t1 9 R b =R ..

W.l.o.G. we assume that we always rewrite at the lowest possible position
= there exists a step ty —x ty4+1 that is not an innermost step

(tv 7w tni1) performed at some position 7

Due to minimality rewriting ty —>% sy at a position 7 below 7 can not
start an infinite evaluation
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Sa: g = {3a:f(g)Ys: 1}
fx) = {Llielxx)}

Not AST: directly performing the f-rule to duplicate the g's results in

Ss: g — {3+:c(gg)/+: 1}

— Biased random walk with p = 3/4 > 1/2, hence not AST.

15/20



PTRS
000@e000

Properties for Equality of Termination cont.

But Innermost AST: f(xe); I E/“ C{)((g)x)l}{4 11}

16/20



PTRS
000@e000

Properties for Equality of Termination cont.

But Innermost AST: f(xe); I E/“ C{)((g)x)l}{4 11}

a

16/20



PTRS
000@e000

Properties for Equality of Termination cont.

But Innermost AST: f(j I E/“ C(f)((g)x)l}ﬂ i1}

po :

16/20



PTRS
000@e000

Properties for Equality of Termination cont.

But Innermost AST: f(j I E/“ c(f)gg)x)l}{4 i1}

po :

2

16/20



PTRS
000@e000

Properties for Equality of Termination cont.

But Innermost AST: f(j I E/“ c(f)(f)x)l}/‘l i1}

po :

e |7 1)) | [Ya- 3 6(1)]

w0 REE@)) | (Y () R(R(L)

16/20



PTRS
000@e000

Properties for Equality of Termination cont.
g~ {34 f(g), /o L}

But Innermost AST: f(x) = {1:c(x,x)}
Mo :
pa
[ : | (/a7 : £(8(2)) | [1/a- 3 £(1)]

we e G| [y @) ]

16/20



PTRS
000@e000

Properties for Equality of Termination cont.
g — {3/4:f(g),Ys: L}

But Innermost AST: f(x) — {1: c(x, %)}
Ho
B
Ha (1 - e))| [ 3 f()]
w0 FEE@) | (Y ()RR

!

li =
om | k]

16/20



PTRS
000@e000

Properties for Equality of Termination cont.
g — {3/4:f(g),Ys: L}

But Innermost AST: f(x) — {1: c(x, %)}
Ho
B
Ha (1 - e))| [ 3 f()]
w0 FEE@) | (Y ()RR

!

fim Jjax] = 14
k—o0

16/20



PTRS
000@e000

Properties for Equality of Termination cont.
g — {3/4:f(g),Ys: L}

But Innermost AST: f(x) — {1: c(x, )}
Ho
B
Ha [l - f(@))| [ ()]
w0 FEE@) | (Y ()RR

!

lim |puk| = Y4+ 1/a-3/a
k— o0

16/20



PTRS
000@e000

Properties for Equality of Termination cont.
g — {3/4:f(g),Ys: L}

But Innermost AST: f(x) = {1 : c(x. )}
o
o
e [Crr @] [ e O]
o [CRPREE@)) | [ () (1) ]

! o~

lemOO || = Y/a+1/a-3/a+1/a- (3/4)2

16/20



PTRS
000@e000

Properties for Equality of Termination cont.
g — {3/4:f(g),Ys: L}

But Innermost AST: f(x) — {1: c(x, %)}
Ho
B
Ha (1 - e))| [ 3 f()]
w0 FEE@) | (Y ()RR

!

Jim ] = Ya ot Ya- 3at Ya- (3a)? +

16/20



PTRS
000@e000

Properties for Equality of Termination cont.
g — {3/4:f(g),Ys: L}

But Innermost AST: f(x) — {1: c(x, %)}
Ho
B
Ha (1 - e))| [ 3 f()]
w0 FEE@) | (Y ()RR

!

oo

Jim (= Yo Y Yok Yar GlaP e = D s ()

i=0

16/20



PTRS
000@e000

Properties for Equality of Termination cont.
g — {3/4:f(g),Ys: L}

But Innermost AST: f(x) — {1: c(x, %)}
Ho
B
Ha (1 - e))| [ 3 f()]
w0 FEE@) | (Y ()RR

!

oo

Nim ] = Ya ot Ya-3at Yoo (3fa) 4 =D Ya (3a) =1

i=0

16/20



PTRS
0000e00

Duplicating

Duplicating

17/20



PTRS
0000e00

Duplicating

Duplicating

If there exists a rule £ — r of R such that a variable occurs more often in
the right-hand side r than in the left-hand side ¢, then R is duplicating.

17/20



PTRS
0000e00

Duplicating

Duplicating

If there exists a rule £ — r of R such that a variable occurs more often in
the right-hand side r than in the left-hand side ¢, then R is duplicating.

So: g — {3a:f(g),Ya: L}
— {1l:c(x,x)} J

17/20



PTRS
0000e00

Duplicating

Duplicating

If there exists a rule £ — r of R such that a variable occurs more often in
the right-hand side r than in the left-hand side ¢, then R is duplicating.

So: g — {3a:f(g),Ya: L}
— {1l:c(x,x)} J

17/20



PTRS
0000e00

Duplicating

Duplicating

If there exists a rule £ — r of R such that a variable occurs more often in
the right-hand side r than in the left-hand side ¢, then R is duplicating.

So: g — {3a:f(g),Ya: L}
— {1l:c(x,x)} J

— &> is duplicating.

17/20



TRS PTRS
00000000000 00000e0

Properties for Equality of AST

If S is non-overlapping and non-duplicating then:

S is innermost AST iff S is AST.

18/20



TRS PTRS
00000000000 00000e0

Properties for Equality of AST

If S is non-overlapping and non-duplicating then:

S is innermost AST iff S is AST.

1. Same minimality criterion

18/20



PTRS
00000e0

Properties for Equality of AST

If S is non-overlapping and non-duplicating then:

S is innermost AST iff S is AST.

1. Same minimality criterion

2. Same construction

18/20



PTRS
00000e0
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Theorem

If S is non-overlapping and non-duplicating then:

S is innermost AST iff S is AST.

1. Same minimality criterion E
2. Same construction

3. Calculating the probability of termination
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Left-linearity means that every variable can only occur once in the left-hand side of each rewrite rule.
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The minimality criterion does not work in the probabilistic setting. Hence, the proof is a bit different at the beginning.
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@ Structural properties for the equality of AST and innermost AST

If S is non-overlapping and non-duplicating then:
S is innermost AST iff S is AST.

@ We can now use previously developed methods for innermost AST
for the analysis of AST as well
— DP Framework

@ Ongoing implementation in AProVE
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