Jan-Christoph Kassing, Florian Frohn, and Jürgen Giesl RWTH Aachen

April 2024

Termination of TRSs

$$\mathcal{R}_{\textit{plus}}$$
: $ext{plus}(0, y) \rightarrow y \\ ext{plus}(s(x), y) \rightarrow s(\text{plus}(x, y))$

Termination of TRSs

$$\mathcal{R}_{\textit{plus}}$$
: $ext{plus}(0, y) \rightarrow y \\ ext{plus}(s(x), y) \rightarrow s(ext{plus}(x, y))$

$$\mathsf{plus}(\mathsf{s}(0),\mathsf{plus}(0,0))$$

TRS •000000

$$\mathcal{R}_{\textit{plus}}$$
: $\mathsf{plus}(0,y) \to y$ $\mathsf{plus}(\mathsf{s}(x),y) \to \mathsf{s}(\mathsf{plus}(x,y))$

$$\begin{array}{c} \mathsf{plus}(\mathsf{s}(0),\mathsf{plus}(0,0)) \\ \\ \\ \mathsf{s}(\mathsf{plus}(0,\mathsf{plus}(0,0))) \end{array}$$

Termination of TRSs

```
\mathcal{R}_{\textit{plus}}:
                                                                                          \begin{array}{ccc} \mathsf{plus}(\mathsf{0},y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

```
plus(s(0), plus(0, 0))
               s(plus(0, plus(0, 0)))
        s(plus(0,0))
```

Termination of TRSs

$$\mathcal{R}_{\mathit{plus}}$$
: $\underset{\mathsf{plus}(\mathsf{s}(x),y)}{\mathsf{plus}(\mathsf{s}(x),y)} \to \underset{\mathsf{s}(\mathsf{plus}(x,y))}{\mathsf{y}}$

plus(s(0), plus(0, 0))

```
s(plus(0, plus(0, 0)))
s(plus(0,0))
    s(0)
```

TRS •000000

$$\mathcal{R}_{plus}$$
: $\underset{\mathsf{plus}(s(x),y)}{\mathsf{plus}(0,y)} \rightarrow \underset{\mathsf{s}(\mathsf{plus}(x,y))}{\mathsf{y}}$

Termination of TRSs

```
\mathcal{R}_{plus}:
                                                                                 \begin{array}{ccc} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

```
plus(s(0), plus(0, 0))
plus(s(0), 0)
                         s(plus(0, plus(0, 0)))
s(plus(0,0)) s(plus(0,0))
                      s(0)
```

•000000

$$\mathcal{R}_{plus}$$
: $\underset{\mathsf{plus}(s(x),y)}{\mathsf{plus}(0,y)} \rightarrow \underset{\mathsf{s}(\mathsf{plus}(x,y))}{\mathsf{y}}$

•000000

Termination of TRSs

```
\mathcal{R}_{plus}:
                                                                                      \begin{array}{ccc} \mathsf{plus}(\mathsf{0},y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}
```

```
plus(s(0), plus(0, 0))
plus(s(0), 0)
                           s(plus(0, plus(0, 0)))
s(plus(0,0)) \qquad s(plus(0,0))
                                           s(plus(0,0))
    s(0)
                        s(0)
```

Termination of TRSs

TRS

•000000

$$\mathcal{R}_{\textit{plus}}$$
: $\underset{\mathsf{plus}(s(x),y)}{\mathsf{plus}(s(x),y)} \rightarrow \underset{\mathsf{s}(\mathsf{plus}(x,y))}{\mathsf{y}}$

•000000

$$\mathcal{R}_{\mathit{plus}}$$
: $\mathsf{plus}(0,y) \to y \ \mathsf{plus}(\mathsf{s}(x),y) \to \mathsf{s}(\mathsf{plus}(x,y))$

Innermost evaluation: always use an innermost reducible expression

Termination of TRSs

$$\mathcal{R}_{ extit{plus}}$$
: $extit{plus}(0,y) o y extit{plus}(s(x),y) o s(extit{plus}(x,y))$

Innermost evaluation: always use an innermost reducible expression

Termination

 \mathcal{R} is terminating iff there is no infinite evaluation $t_0 \to_{\mathcal{R}} t_1 \to_{\mathcal{R}} \dots$

Termination and Complexity Analysis for Programs

Java

TRS 0•00000

Prolog

C

Haskell

000000

 TRS: especially good for the analysis of algorithms concerning algebraic structures and user-defined data structures

000000

- TRS: especially good for the analysis of algorithms concerning algebraic structures and user-defined data structures
- Turing-complete programming language
 - ⇒ Termination is undecidable

Innermost Termination vs. Termination

 \mathcal{R}_2 : $f(a) \ \rightarrow \ f(a)$

Innermost Termination vs. Termination

 \mathcal{R}_2 : $f(a) \rightarrow f(a)$

Terminating? No:

 \mathcal{R}_2 :

TRS 00•0000

$$\begin{array}{ccc} f(a) & \to & f(a) \\ a & \to & b \end{array}$$

Terminating? No:

f(a)

 \mathcal{R}_2 :

TRS 00•0000

$$f(a) \rightarrow f(a)$$

Terminating? No:

$$f(a) \rightarrow_{\mathcal{R}_2} f(a)$$

 \mathcal{R}_2 :

TRS 00•0000

$$f(a) \rightarrow f(a)$$

 $a \rightarrow b$

Terminating? No:

$$f(a) \rightarrow_{\mathcal{R}_2} f(a) \rightarrow_{\mathcal{R}_2} \dots$$

 \mathcal{R}_2 :

TRS 0000000

$$\begin{array}{ccc} f(a) & \to & f(a) \\ a & \to & b \end{array}$$

Terminating? No:

$$f(a) \rightarrow_{\mathcal{R}_2} f(a) \rightarrow_{\mathcal{R}_2} \dots$$

 \mathcal{R}_2 :

TRS 0000000

$$\begin{array}{ccc} f(a) & \to & f(a) \\ a & \to & b \end{array}$$

Terminating? No:

$$f(a) \rightarrow_{\mathcal{R}_2} f(a) \rightarrow_{\mathcal{R}_2} \dots$$

 \mathcal{R}_2 :

TRS 000000

$$\begin{array}{ccc} f(a) & \to & f(a) \\ a & \to & b \end{array}$$

Terminating? No:

$$\mathsf{f}(\mathsf{a}) \to_{\mathcal{R}_2} \mathsf{f}(\mathsf{a}) \to_{\mathcal{R}_2} \dots$$

$$f({\color{red} a}) \stackrel{i}{\rightarrow}_{\mathcal{R}_2} f(b)$$

 \mathcal{R}_2 :

TRS 000000

$$\begin{array}{ccc} f(a) & \to & f(a) \\ a & \to & b \end{array}$$

Terminating? No:

$$\mathsf{f}(\mathsf{a}) \to_{\mathcal{R}_2} \mathsf{f}(\mathsf{a}) \to_{\mathcal{R}_2} \dots$$

$$f(a) \overset{i}{\to}_{\mathcal{R}_2} f(b) \leftarrow normal \ form$$

 \mathcal{R}_2 :

TRS 000000

$$\begin{array}{ccc} f(a) & \to & f(a) \\ a & \to & b \end{array}$$

Terminating? No:

$$f(a) \rightarrow_{\mathcal{R}_2} f(a) \rightarrow_{\mathcal{R}_2} \dots$$

Innermost Terminating? Yes:

$$f(a) \xrightarrow{i}_{\mathcal{R}_2} f(b) \leftarrow normal form$$

Termination ⇒ Innermost Termination

 \mathcal{R}_2 :

TRS

$$\begin{array}{ccc} f(a) & \to & f(a) \\ a & \to & b \end{array}$$

Terminating? No:

$$\mathsf{f}(\mathsf{a}) \to_{\mathcal{R}_2} \mathsf{f}(\mathsf{a}) \to_{\mathcal{R}_2} \dots$$

Innermost Terminating? Yes:

$$f(a) \overset{i}{\rightarrow}_{\mathcal{R}_2} f(b) \leftarrow normal \ form$$

Termination ⇒ Innermost Termination

Goal: Decidable Conditions s.t. Innermost Termination ⇒ Termination

Termination of Probabilistic TRSs

Termination of Probabilistic TRSs

Relating different evaluation strategies for TRSs (non-overlapping)

0000000

Termination of Probabilistic TRSs

- Relating different evaluation strategies for TRSs (non-overlapping)
- Relating different evaluation strategies for probabilistic TRSs (linear)

0000000

Termination of Probabilistic TRSs

- Relating different evaluation strategies for TRSs (non-overlapping)
- Relating different evaluation strategies for probabilistic TRSs (linear)
- Improving on right-linearity

0000000

Termination of Probabilistic TRSs

- Relating different evaluation strategies for TRSs (non-overlapping)
- Relating different evaluation strategies for probabilistic TRSs (linear)
- Improving on right-linearity
- Improving on left-linearity

0000000

Termination of Probabilistic TRSs

- Relating different evaluation strategies for TRSs (non-overlapping)
- Relating different evaluation strategies for probabilistic TRSs (linear)
- Improving on right-linearity
- Improving on left-linearity

$$\bullet \ \ell_1 \to r_1, \ell_2 \to r_2 \in \mathcal{R}$$

- $\ell_1 \rightarrow r_1, \ell_2 \rightarrow r_2 \in \mathcal{R}$
- non-variable subterm ℓ_2' of ℓ_2 such that ℓ_1 and ℓ_2' are unifiable

- $\ell_1 \rightarrow r_1, \ell_2 \rightarrow r_2 \in \mathcal{R}$
- non-variable subterm ℓ_2' of ℓ_2 such that ℓ_1 and ℓ_2' are unifiable

$$\mathcal{R}_2$$
:
$$\begin{array}{ccc} f(a) & \rightarrow & f(a) \\ a & \rightarrow & b \end{array}$$

TRS 0000•00

venapping

- $\bullet \ \ell_1 \to \textit{r}_1, \ell_2 \to \textit{r}_2 \in \mathcal{R}$
- non-variable subterm ℓ_2' of ℓ_2 such that ℓ_1 and ℓ_2' are unifiable

$$\mathcal{R}_2$$
:
$$\begin{array}{ccc} f(a) & \rightarrow & f(a) \\ a & \rightarrow & b \end{array}$$

...

- $\bullet \ \ell_1 \to r_1, \ell_2 \to r_2 \in \mathcal{R}$
- ullet non-variable subterm ℓ_2' of ℓ_2 such that ℓ_1 and ℓ_2' are unifiable

$$\begin{array}{cccc} \mathcal{R}_2 \colon & & & f(a) & \to & f(a) \\ & a & \to & b & & \end{array}$$

venapping

- $\bullet \ \ell_1 \to r_1, \ell_2 \to r_2 \in \mathcal{R}$
- non-variable subterm ℓ_2' of ℓ_2 such that ℓ_1 and ℓ_2' are unifiable

$$\begin{array}{cccc} \mathcal{R}_2 \colon & & & f(a) & \to & f(a) \\ & a & \to & b & \end{array}$$

Overlapping

- $\ell_1 \rightarrow r_1, \ell_2 \rightarrow r_2 \in \mathcal{R}$
- ullet non-variable subterm ℓ_2' of ℓ_2 such that ℓ_1 and ℓ_2' are unifiable

 $\begin{array}{cccc} \mathcal{R}_2 \colon & & & f(a) & \to & f(a) \\ & a & \to & b \end{array}$

0000000

- $\ell_1 \rightarrow r_1, \ell_2 \rightarrow r_2 \in \mathcal{R}$
- non-variable subterm ℓ_2' of ℓ_2 such that ℓ_1 and ℓ_2' are unifiable

$$\mathcal{R}_2$$
:
$$\begin{array}{ccc} f(a) & \rightarrow & f(a) \\ a & \rightarrow & b \end{array}$$

$$\ell_1 = \mathsf{a}, \; \ell_2 = \mathsf{f}(\mathsf{a}), \; \ell_2' = \mathsf{a}, \; \mathsf{mgu}(\mathsf{a},\mathsf{a}) = \varnothing$$

0000000

- $\ell_1 \rightarrow r_1, \ell_2 \rightarrow r_2 \in \mathcal{R}$
- non-variable subterm ℓ_2' of ℓ_2 such that ℓ_1 and ℓ_2' are unifiable

$$\mathcal{R}_2$$
:
$$\begin{array}{ccc} f(a) & \rightarrow & f(a) \\ a & \rightarrow & b \end{array}$$

$$\ell_1=$$
 a, $\ell_2=$ f(a), $\ell_2'=$ a, mgu(a, a) = \varnothing $\to \mathcal{R}_2$ is overlapping.

TRS

0000000

non-overlapping (Idea)

- at most one possible rewrite step at each position
- rewriting at another position does not interfere

0000000

non-overlapping (Idea)

- at most one possible rewrite step at each position
- rewriting at another position does not interfere

$$\mathcal{R}_{\mathit{plus}}$$
: $\mathsf{plus}(0,y) \to y \ \mathsf{plus}(\mathsf{s}(x),y) \to \mathsf{s}(\mathsf{plus}(x,y))$

TRS

0000000

non-overlapping (Idea)

- at most one possible rewrite step at each position
- rewriting at another position does not interfere

$$\mathcal{R}_{\textit{plus}}$$
: $\begin{array}{ccc} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$

0000000

non-overlapping (Idea)

- at most one possible rewrite step at each position
- rewriting at another position does not interfere

$$\mathcal{R}_{plus}$$
: $\begin{array}{ccc} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$

 $ightarrow \mathcal{R}_{ extit{plus}}$ is non-overlapping.

0000000

non-overlapping (Idea)

- at most one possible rewrite step at each position
- rewriting at another position does not interfere

$$\mathcal{R}_{plus}$$
: $\underset{\mathsf{plus}(\mathsf{s}(x),y)}{\mathsf{plus}(\mathsf{s}(x),y)} \to y$
 $\underset{\mathsf{s}(\mathsf{plus}(x,y))}{\mathsf{plus}(\mathsf{s}(x),y)} \to s(\mathsf{plus}(x,y))$

 $\rightarrow \mathcal{R}_{plus}$ is non-overlapping.

Idea:

non-overlapping (Idea)

- at most one possible rewrite step at each position
- rewriting at another position does not interfere

$$\mathcal{R}_{plus}$$
: $\underset{\mathsf{plus}(s(x),y)}{\mathsf{plus}(0,y)} \rightarrow y$ $\underset{\mathsf{plus}(s(x),y)}{\mathsf{plus}(s(x),y)} \rightarrow s(\mathsf{plus}(x,y))$

 $ightarrow \mathcal{R}_{ extit{plus}}$ is non-overlapping.

<u>ldea</u>:

non-overlapping (Idea)

- at most one possible rewrite step at each position
- rewriting at another position does not interfere

$$\mathcal{R}_{plus}$$
: $\begin{array}{ccc} \mathsf{plus}(0,y) & \to & y \\ \mathsf{plus}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{plus}(x,y)) \end{array}$

 $ightarrow \mathcal{R}_{ extit{plus}}$ is non-overlapping.

<u>ldea</u>:

non-overlapping (Idea)

- at most one possible rewrite step at each position
- rewriting at another position does not interfere

$$\mathcal{R}_{plus}$$
: $\underset{\mathsf{plus}(s(x),y)}{\mathsf{plus}(0,y)} \rightarrow y$ $\underset{\mathsf{plus}(s(x),y)}{\mathsf{plus}(s(x),y)} \rightarrow s(\mathsf{plus}(x,y))$

 $ightarrow \mathcal{R}_{ extit{plus}}$ is non-overlapping.

Idea:

Condition for Equivalence

Theorem [Gramlich 1995]

If ${\mathcal R}$ is non-overlapping then:

 \mathcal{R} is terminating $\iff \mathcal{R}$ is innermost terminating.

- Relating different evaluation strategies for TRSs (non-overlapping)
- Relating different evaluation strategies for probabilistic TRSs (linear)
- Improving on right-linearity
- Improving on left-linearity

 ${\cal R}_{rw}\colon \qquad \qquad g(0) \ \to \ \{\,{}^{1\!\!}/_{2}:0,\,\,{}^{1\!\!}/_{2}:g(g(0))\,\}$

$$\mathcal{R}_{\textit{rw}} \colon \qquad \qquad g(0) \ \to \ \{\, {}^{1\!\!}/_{\!2} : 0, \,\, {}^{1\!\!}/_{\!2} : g(g(0)) \,\}$$

Multi-Distribution: $\{p_1:t_1,\ldots,p_k:t_k\}$ with $p_1+\ldots+p_k=1$

$$\mathcal{R}_{rw}$$
: $g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}$

Multi-Distribution:
$$\{\,p_1:t_1,\,\ldots,\,p_k:t_k\,\}$$
 with $p_1+\ldots+p_k=1$ $\{\,1:g(0)\,\}$

```
\mathcal{R}_{rw} \colon \qquad \qquad g(0) \ \to \ \{\, {}^{1}\!/_{2} : 0, \,\, {}^{1}\!/_{2} : g(g(0)) \,\}
```

Multi-Distribution:
$$\{p_1:t_1,\ldots,p_k:t_k\}$$
 with $p_1+\ldots+p_k=1$ $\{1:g(0)\}$ $\Rightarrow_{\mathcal{R}_{rw}} \{\frac{1}{2}:0,\frac{1}{2}:g^2(0)\}$

```
\mathcal{R}_{\text{rw}} \colon \qquad \qquad g(0) \ \to \ \{\, {}^{1\!\!}/_{\!2} : 0, \,\, {}^{1\!\!}/_{\!2} : g(g(0)) \,\}
```

$$\begin{aligned} & \text{Multi-Distribution:} & \quad \{ \ p_1 : t_1, \ \dots, \ p_k : t_k \ \} & \text{ with } p_1 + \dots + p_k = 1 \\ & \quad \{ \ 1 : g(0) \ \} & \\ & \quad \Rightarrow_{\mathcal{R}_{rw}} & \quad \{ \ ^1\!/_2 : 0, \ ^1\!/_2 : g^2(0) \ \} & \\ & \quad \Rightarrow_{\mathcal{R}_{rw}} & \quad \{ \ ^1\!/_2 : 0, \ ^1\!/_4 : g(0), \ ^1\!/_4 : g^3(0) \ \} & \end{aligned}$$

$$\mathcal{R}_{rw}$$
: $g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}$

$$\begin{aligned} \text{Multi-Distribution:} & \quad \{ \ p_1 : t_1, \ \dots, \ p_k : t_k \ \} \ \ \text{with} \ p_1 + \dots + p_k = 1 \\ & \quad \{ \ 1 : g(0) \ \} \\ & \quad \Rightarrow_{\mathcal{R}_{rw}} & \quad \{ \ ^1\!/\!_2 : 0, \ ^1\!/\!_2 : g^2(0) \ \} \\ & \quad \Rightarrow_{\mathcal{R}_{rw}} & \quad \{ \ ^1\!/\!_2 : 0, \ ^1\!/\!_4 : g(0), \ ^1\!/\!_4 : g^3(0) \ \} \\ & \quad \Rightarrow_{\mathcal{R}_{rw}} & \quad \{ \ ^1\!/\!_2 : 0, \ ^1\!/\!_8 : 0, \ ^1\!/\!_8 : g^2(0), \end{aligned}$$

$$\mathcal{R}_{rw}$$
: $g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}$

$$\begin{split} \text{Multi-Distribution:} & \quad \{ \ p_1 : t_1, \ \dots, \ p_k : t_k \ \} \quad \text{with} \ p_1 + \dots + p_k = 1 \\ & \quad \{ \ 1 : g(0) \ \} \\ & \quad \rightrightarrows_{\mathcal{R}_{rw}} & \quad \{ \ ^1\!/\!_2 : 0, \ ^1\!/\!_2 : g^2(0) \ \} \\ & \quad \rightrightarrows_{\mathcal{R}_{rw}} & \quad \{ \ ^1\!/\!_2 : 0, \ ^1\!/\!_4 : g(0), \ ^1\!/\!_4 : g^3(0) \ \} \\ & \quad \rightrightarrows_{\mathcal{R}_{rw}} & \quad \{ \ ^1\!/\!_2 : 0, \ ^1\!/\!_8 : 0, \ ^1\!/\!_8 : g^2(0), \ ^1\!/\!_8 : g^2(0), \ ^1\!/\!_8 : g^4(0) \ \} \end{split}$$

Termination of Probabilistic TRSs

PTRS

0000000

```
\mathcal{R}_{rw}:
                            g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}
```

```
Multi-Distribution:
                                           \{p_1: t_1, \ldots, p_k: t_k\} with p_1 + \ldots + p_k = 1
                                   \{1:g(0)\}
                  \Rightarrow_{\mathcal{R}_{nv}} \{ \frac{1}{2} : 0, \frac{1}{2} : g^2(0) \}
                  \Rightarrow_{\mathcal{R}_{\text{opt}}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}
                  \Rightarrow_{\mathcal{R}_{pw}} { \frac{1}{2} : 0, \frac{1}{8} : 0, \frac{1}{8} : g^2(0), \frac{1}{8} : g^2(0), \frac{1}{8} : g^4(0) }
```

Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...]

• \mathcal{R} is *terminating* iff there is no infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$

Termination of Probabilistic TRSs

PTRS

$$\mathcal{R}_{rw} \colon \qquad \qquad g(0) \ \to \ \{\, {}^{1\!\!}/_{2} : 0, \,\, {}^{1\!\!}/_{2} : g(g(0)) \,\}$$

```
Multi-Distribution:
                                           \{p_1:t_1,\ldots,p_k:t_k\} with p_1+\ldots+p_k=1
                                  \{1:g(0)\}
                  \Rightarrow_{\mathcal{R}_{nv}} \{ \frac{1}{2} : 0, \frac{1}{2} : g^2(0) \}
                  \Rightarrow_{\mathcal{R}_{\text{opt}}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}
                  \Rightarrow_{\mathcal{R}_{pw}} { \frac{1}{2} : 0, \frac{1}{8} : 0, \frac{1}{8} : g^2(0), \frac{1}{8} : g^2(0), \frac{1}{8} : g^4(0) }
```

Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...]

• \mathcal{R} is *terminating* iff there is no infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$ No 0000000

```
Rm:
                     g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}
```

```
Multi-Distribution:
                                           \{p_1: t_1, \ldots, p_k: t_k\} with p_1 + \ldots + p_k = 1
                                   \{1:g(0)\}
                  \Rightarrow_{\mathcal{R}_{nv}} \{ \frac{1}{2} : 0, \frac{1}{2} : g^2(0) \}
                  \Rightarrow_{\mathcal{R}_{\text{opt}}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}
                  \Rightarrow_{\mathcal{R}_{pw}} { \frac{1}{2} : 0, \frac{1}{8} : 0, \frac{1}{8} : g^2(0), \frac{1}{8} : g^2(0), \frac{1}{8} : g^4(0) }
```

Termination for PTRSs

- \mathcal{R} is *terminating* iff there is no infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$ No
- \mathcal{R} is almost-surely terminating (AST) iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$

Termination of Probabilistic TRSs

0000000

```
Rm:
                     g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}
```

```
Multi-Distribution:
                                           \{p_1:t_1,\ldots,p_k:t_k\} with p_1+\ldots+p_k=1
                                                                                                                                            |\mu|
                                  \{1:g(0)\}
                  \Rightarrow_{\mathcal{R}_{nv}} \{ \frac{1}{2} : 0, \frac{1}{2} : g^2(0) \}
                  \Rightarrow_{\mathcal{R}_{\text{opt}}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}
                  \Rightarrow_{\mathcal{R}_{pw}} { \frac{1}{2} : 0, \frac{1}{8} : 0, \frac{1}{8} : g^2(0), \frac{1}{8} : g^2(0), \frac{1}{8} : g^4(0) }
```

Termination for PTRSs

- \mathcal{R} is *terminating* iff there is no infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$ No
- \mathcal{R} is almost-surely terminating (AST) iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$

Termination of Probabilistic TRSs

0000000

$$\mathcal{R}_{\textit{rw}} \colon \qquad \qquad g(0) \ \to \ \{\, {}^{1\!\!}/_{\!2} : 0, \,\, {}^{1\!\!}/_{\!2} : g(g(0)) \,\}$$

```
Multi-Distribution:
                                          \{p_1:t_1,\ldots,p_k:t_k\} with p_1+\ldots+p_k=1
                                                                                                                                           |\mu|
                                  \{1:g(0)\}
                                                                                                                                           0
                  \Rightarrow_{\mathcal{R}_{nv}} \{ \frac{1}{2} : 0, \frac{1}{2} : g^2(0) \}
                  \Rightarrow_{\mathcal{R}_{\text{opt}}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}
                  \Rightarrow_{\mathcal{R}_{pw}} { \frac{1}{2} : 0, \frac{1}{8} : 0, \frac{1}{8} : g^2(0), \frac{1}{8} : g^2(0), \frac{1}{8} : g^4(0) }
```

Termination for PTRSs

- \mathcal{R} is *terminating* iff there is no infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$ No
- \mathcal{R} is almost-surely terminating (AST) iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$

Termination of Probabilistic TRSs

$${\cal R}_{rw}\colon \qquad \qquad g(0) \ \to \ \{\,{}^{1}\!/_{2}:0,\,\,{}^{1}\!/_{2}:g(g(0))\,\}$$

```
\{p_1:t_1,\ldots,p_k:t_k\} with p_1+\ldots+p_k=1
Multi-Distribution:
                                                                                                                                            |\mu|
                                  \{1:g(0)\}
                                                                                                                                            0
                  \Rightarrow_{\mathcal{R}_{nv}} \{ \frac{1}{2} : 0, \frac{1}{2} : g^2(0) \}
                                                                                                                                            1/_{2}
                  \Rightarrow_{\mathcal{R}_{\text{opt}}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}
                  \Rightarrow_{\mathcal{R}_{pw}} { \frac{1}{2} : 0, \frac{1}{8} : 0, \frac{1}{8} : g^2(0), \frac{1}{8} : g^2(0), \frac{1}{8} : g^4(0) }
```

Termination for PTRSs

- \mathcal{R} is *terminating* iff there is no infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$ No
- \mathcal{R} is almost-surely terminating (AST) iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$

Termination of Probabilistic TRSs

$${\cal R}_{rw}\colon \qquad \qquad g(0) \ \to \ \{\,{}^{1}\!/_{2}:0,\,\,{}^{1}\!/_{2}:g(g(0))\,\}$$

$$\begin{aligned} & \text{Multi-Distribution:} & \quad \left\{ \begin{array}{l} p_1:t_1, \, \ldots, \, p_k:t_k \, \right\} & \text{with } p_1 + \ldots + p_k = 1 \\ & \quad \left\{ \begin{array}{l} 1: \mathsf{g}(0) \, \right\} & \quad 0 \\ \\ & \Rightarrow_{\mathcal{R}_{\mathit{rw}}} & \left\{ \begin{array}{l} \frac{1}{2}:0, \, \frac{1}{2}:\mathsf{g}^2(0) \, \right\} \\ \\ & \Rightarrow_{\mathcal{R}_{\mathit{rw}}} & \left\{ \begin{array}{l} \frac{1}{2}:0, \, \frac{1}{4}:\mathsf{g}(0), \, \frac{1}{4}:\mathsf{g}^3(0) \, \right\} \\ \\ & \Rightarrow_{\mathcal{R}_{\mathit{rw}}} & \left\{ \begin{array}{l} \frac{1}{2}:0, \, \frac{1}{4}:\mathsf{g}(0), \, \frac{1}{4}:\mathsf{g}^2(0), \, \frac{1}{8}:\mathsf{g}^2(0), \, \frac{1}{8}:\mathsf{g}^4(0) \, \right\} \end{aligned} \end{aligned}$$

Termination for PTRSs

- \mathcal{R} is *terminating* iff there is no infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$ No
- \mathcal{R} is almost-surely terminating (AST) iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$

0000000

```
Rm:
                     g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}
```

$$\begin{aligned} & \text{Multi-Distribution:} & \left\{ \; p_1 : t_1, \, \ldots, \, p_k : t_k \; \right\} \; \text{ with } p_1 + \ldots + p_k = 1 & |\mu| \\ & \left\{ \; 1 : \mathsf{g}(0) \; \right\} & 0 \\ & \Rightarrow_{\mathcal{R}_{\mathit{rw}}} & \left\{ \; ^1 \! / \! 2 : 0, \; ^1 \! / \! 2 : \mathsf{g}^2(0) \; \right\} & 1 \! / \! 2 \\ & \Rightarrow_{\mathcal{R}_{\mathit{rw}}} & \left\{ \; ^1 \! / \! 2 : 0, \; ^1 \! / \! 4 : \mathsf{g}(0), \; ^1 \! / \! 4 : \mathsf{g}^3(0) \; \right\} & 1 \! / \! 2 \\ & \Rightarrow_{\mathcal{R}_{\mathit{rw}}} & \left\{ \; ^1 \! / \! 2 : 0, \; ^1 \! / \! 8 : 0, \; ^1 \! / \! 8 : \mathsf{g}^2(0), \; ^1 \! / \! 8 : \mathsf{g}^2(0), \; ^1 \! / \! 8 : \mathsf{g}^4(0) \; \right\} & 5 \! / \! 8 \end{aligned}$$

Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...]

- \mathcal{R} is *terminating* iff there is no infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$ No
- \mathcal{R} is almost-surely terminating (AST) iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$

Improving on Left-Linearity

```
Rm:
                     g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}
```

```
\{p_1:t_1,\ldots,p_k:t_k\} with p_1+\ldots+p_k=1
Multi-Distribution:
                                                                                                                                          |\mu|
                                 \{1:g(0)\}
                                                                                                                                          0
                  \Rightarrow_{\mathcal{R}_{nv}} \{ \frac{1}{2} : 0, \frac{1}{2} : g^2(0) \}
                                                                                                                                          1/_{2}
                  \Rightarrow_{\mathcal{R}_{\text{opt}}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}
                                                                                                                                          1/_{2}
                  \Rightarrow_{\mathcal{R}_{pw}} { \frac{1}{2}: 0, \frac{1}{8}: 0, \frac{1}{8}: g^2(0), \frac{1}{8}: g^2(0), \frac{1}{8}: g^4(0) }
                                                                                                                                          5/8
```

Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...]

- \mathcal{R} is *terminating* iff there is no infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$ No
- \mathcal{R} is almost-surely terminating (AST) iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$ Yes

0000000

Termination of Probabilistic TRSs

```
Rm:
                     g(0) \rightarrow \{1/2:0, 1/2:g(g(0))\}
```

```
\{p_1:t_1,\ldots,p_k:t_k\} with p_1+\ldots+p_k=1
Multi-Distribution:
                                                                                                                                          |\mu|
                                 \{1:g(0)\}
                                                                                                                                          0
                  \Rightarrow_{\mathcal{R}_{nv}} \{ \frac{1}{2} : 0, \frac{1}{2} : g^2(0) \}
                                                                                                                                          1/_{2}
                  \Rightarrow_{\mathcal{R}_{\text{opt}}} \{ \frac{1}{2} : 0, \frac{1}{4} : g(0), \frac{1}{4} : g^3(0) \}
                                                                                                                                          1/_{2}
                  \Rightarrow_{\mathcal{R}_{pw}} { \frac{1}{2}: 0, \frac{1}{8}: 0, \frac{1}{8}: g^2(0), \frac{1}{8}: g^2(0), \frac{1}{8}: g^4(0) }
                                                                                                                                          5/8
```

Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...]

- \mathcal{R} is *terminating* iff there is no infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$ No
- \mathcal{R} is almost-surely terminating (AST) iff $\lim_{n\to\infty} |\mu_n| = 1$ for every infinite evaluation $\mu_0 \rightrightarrows_{\mathcal{R}} \mu_1 \rightrightarrows_{\mathcal{R}} \dots$ Yes
- positive AST (PAST) / strong AST (SAST)

Innermost AST vs. AST

$$\mathcal{S}_1$$
:

$$\begin{array}{ccc} f(a) & \rightarrow & \{1:f(a)\} \\ a & \rightarrow & \{1:b\} \end{array}$$

AST? No:

$$\{1:\mathsf{f}(\mathsf{a})\}
ightrightarrows_1 \{1:\mathsf{f}(\mathsf{a})\}
ightrightarrows_2 \ldots$$

$$\{1:f(a)\}\stackrel{i}{
ightharpoons}_{\mathcal{S}_2}\{1:f(b)\}\leftarrow \text{normal form}$$

$$\mathcal{S}_1$$
:

$$\begin{array}{ccc} f(a) & \rightarrow & \{1:f(a)\} \\ a & \rightarrow & \{1:b\} \end{array}$$

AST? No:

$$\{1:\mathsf{f}(\mathsf{a})\}
ightrightarrows_{\mathcal{S}_1} \{1:\mathsf{f}(\mathsf{a})\}
ightrightarrows_{\mathcal{S}_1} \ldots$$

Innermost AST? Yes:

$$\{1:f(a)\} \stackrel{i}{\Longrightarrow}_{\mathcal{S}_2} \{1:f(b)\} \leftarrow \text{normal form}$$

Need to restrict to non-overlapping PTRSs again

Does non-overlapping still suffice?

Does non-overlapping still suffice? \rightarrow No!

$$\mathcal{S}_2$$
: $\qquad \qquad \qquad g \rightarrow \qquad \{3/4:f(g),1/4:0\}$ $f(x) \rightarrow \qquad \{1:c(x,x)\}$

$$\mathcal{S}_2$$
: g \rightarrow $\{3/4:f(g),1/4:0\}$ $f(x) \rightarrow$ $\{1:c(x,x)\}$

$$\mathcal{S}_2$$
: $\qquad \qquad \qquad g \rightarrow \{3/4:f(g),1/4:0\}$ $\qquad \qquad f(x) \rightarrow \{1:c(x,x)\}$

AST? No: directly applying the f-rule to duplicate the g's:

$$\mathcal{S}_2$$
: $g \rightarrow \{3/4: f(g), 1/4: 0\}$ $f(x) \rightarrow \{1: c(x,x)\}$

AST? No: directly applying the f-rule to duplicate the g's:

$$\mathcal{S}_3 \colon \qquad \qquad g \quad \rightarrow \quad \left\{ {}^{3}\!/_{\!4} : c(g,g), {}^{1}\!/_{\!4} : 0 \right\}$$

Improving on Left-Linearity

Conditions for Equivalence of AST

00000000

Does non-overlapping still suffice? \rightarrow No!

$$\mathcal{S}_2$$
: $\qquad \qquad \qquad g \rightarrow \{3/4:f(g),1/4:0\}$ $f(x) \rightarrow \{1:c(x,x)\}$

AST? No: directly applying the f-rule to duplicate the g's:

$$\mathcal{S}_3 \colon \qquad \qquad g \quad \rightarrow \quad \{ \text{3/4} : c(g,g), \text{1/4} : 0 \}$$

 \rightarrow Biased random walk with p = 3/4 > 1/2, hence not AST.

$$g \to \{3/4 : f(g), 1/4 : 0\}$$

 $f(x) \to \{1 : c(x, x)\}$

$$g \to \{3/4 : f(g), 1/4 : 0\}$$

 $f(x) \to \{1 : c(x, x)\}$

 μ_{0} :

Innermost AST? Yes: $g \to \{3/4 : f(g), 1/4 : 0\}$ $f(x) \to \{1 : c(x, x)\}$

 μ_{0} :

 μ_1 :

$$g \to \{3/4 : f(g), 1/4 : 0\}$$

 $f(x) \to \{1 : c(x, x)\}$

Innermost AST? Yes: $g \to \{3/4 : f(g), 1/4 : 0\}$ $f(x) \to \{1 : c(x, x)\}$

 $g \to \{3/4 : f(g), 1/4 : 0\}$ $f(x) \to \{1 : c(x, x)\}$ Innermost AST? Yes:

$$g \to \{3/4 : f(g), 1/4 : 0\}$$

 $f(x) \to \{1 : c(x, x)\}$

Improving on Left-Linearity

$$\lim_{k\to\infty} |\mu_k| =$$

$$g \to \{3/4 : f(g), 1/4 : 0\}$$

 $f(x) \to \{1 : c(x, x)\}$

$$\lim_{k\to\infty} |\mu_k| = \frac{1/4}{4}$$

$$g \to \{3/4 : f(g), 1/4 : 0\}$$

 $f(x) \to \{1 : c(x, x)\}$

$$\lim_{k \to \infty} |\mu_k| = \frac{1}{4} + \frac{1}{4} \cdot \frac{3}{4}$$

Innermost AST? Yes:

$$g \to \{3/4 : f(g), 1/4 : 0\}$$

 $f(x) \to \{1 : c(x, x)\}$

Improving on Left-Linearity

$$\lim_{k \to \infty} |\mu_k| = \frac{1}{4} + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{(3/4)^2}{4}$$

$$g \to \{3/4 : f(g), 1/4 : 0\}$$

 $f(x) \to \{1 : c(x, x)\}$

$$\lim_{k \to \infty} |\mu_k| = \frac{1}{4} + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \dots$$

$$g \to \{3/4 : f(g), 1/4 : 0\}$$

 $f(x) \to \{1 : c(x, x)\}$

$$\lim_{k\to\infty} |\mu_k| = \frac{1}{4} + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \dots = \sum_{i=0}^{3-1} \frac{1}{4} \cdot \left(\frac{3}{4}\right)^i$$

$$g \to \{3/4 : f(g), 1/4 : 0\}$$

 $f(x) \to \{1 : c(x, x)\}$

$$\lim_{k\to\infty} |\mu_k| = \frac{1}{4} + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \ldots = \sum_{i=0}^{3} \frac{1}{4} \cdot \left(\frac{3}{4}\right)^i = 1$$

Right-Linear

Right-Linear

${\sf Right\text{-}Linear}$

- t is linear iff no variable occurs more than once in t
- $\{p_1:t_1,\ldots,p_k:t_k\}$ is linear iff t_1,\ldots,t_k are linear
- ullet S is right-linear iff for all $\ell o \mu \in \mathcal{S}$, μ is linear

Improving on Left-Linearity

Right-Linear

Right-Linear

- t is linear iff no variable occurs more than once in t
- ullet $\{p_1:t_1,\ldots,p_k:t_k\}$ is linear iff t_1,\ldots,t_k are linear
- ullet ${\mathcal S}$ is right-linear iff for all $\ell o \mu \in {\mathcal S}$, μ is linear

$$\mathcal{S}_2 \colon \qquad \qquad \mathsf{g} \quad \rightarrow \quad \{ {}^3/_4 : \mathsf{f}(\mathsf{g}), {}^1/_4 : 0 \} \\ \mathsf{f}(x) \quad \rightarrow \quad \{ 1 : \mathsf{c}(x,x) \}$$

Improving on Left-Linearity

Right-Linear

Right-Linear

- t is linear iff no variable occurs more than once in t
- ullet $\{p_1:t_1,\ldots,p_k:t_k\}$ is linear iff t_1,\ldots,t_k are linear
- ullet ${\mathcal S}$ is right-linear iff for all $\ell o \mu \in {\mathcal S}$, μ is linear

Right-Linear

Right-Linear

- t is linear iff no variable occurs more than once in t
- $\{p_1: t_1, \ldots, p_k: t_k\}$ is linear iff t_1, \ldots, t_k are linear
- S is right-linear iff for all $\ell \to \mu \in S$, μ is linear

$$\mathcal{S}_2 \colon \qquad \qquad \mathsf{g} \quad \rightarrow \quad \{ {}^3/{}_4 : \mathsf{f}(\mathsf{g}), {}^1/{}_4 : 0 \} \\ \mathsf{f}(\boldsymbol{x}) \quad \rightarrow \quad \{ 1 : \mathsf{c}(\boldsymbol{x}, \boldsymbol{x}) \}$$

 $\rightarrow \mathcal{S}_2$ is not right-linear.

Does non-overlapping and right-linear suffice?

Does non-overlapping and right-linear suffice? \rightarrow No!

Does non-overlapping and right-linear suffice? \rightarrow No!

$$\mathcal{S}_4$$
: a $\rightarrow \{1/2:b,1/2:c\}$ $f(x,x) \rightarrow \{1:f(a,a)\}$

Does non-overlapping and right-linear suffice? \rightarrow No!

$$\mathcal{S}_4$$
:
 $\begin{array}{ccc} \mathsf{a} & \rightarrow & \{1/2:\mathsf{b},1/2:\mathsf{c}\} \\ \mathsf{f}(\mathsf{x},\mathsf{x}) & \rightarrow & \{1:\mathsf{f}(\mathsf{a},\mathsf{a})\} \end{array}$

Does non-overlapping and right-linear suffice? \rightarrow No!

$$\mathcal{S}_4$$
:
 $\begin{array}{ccc} \mathsf{a} & \rightarrow & \{1/2:\mathsf{b},1/2:\mathsf{c}\} \\ \mathsf{f}(\mathsf{x},\mathsf{x}) & \rightarrow & \{1:\mathsf{f}(\mathsf{a},\mathsf{a})\} \end{array}$

$$\{1: f(a, a)\}$$

Does non-overlapping and right-linear suffice? \to No!

$$\mathcal{S}_4$$
: a $\rightarrow \{1/2:b,1/2:c\}$
 $f(x,x) \rightarrow \{1:f(a,a)\}$

$$\{1:\mathsf{f(a,a)}\}
ightrightarrows_{\mathcal{S}_4} \{1:\mathsf{f(a,a)}\}$$

Does non-overlapping and right-linear suffice? \rightarrow No!

$$\mathcal{S}_4$$
: a $\rightarrow \{1/2:b,1/2:c\}$
 $f(x,x) \rightarrow \{1:f(a,a)\}$

AST? No:

$$\{1:\mathsf{f}(\mathsf{a},\mathsf{a})\}
ightrightharpoons \left\{1:\mathsf{f}(\mathsf{a},\mathsf{a})\right\}
ightrightharpoons_{\mathcal{S}_4} \ldots$$

Does non-overlapping and right-linear suffice? \rightarrow No!

$$\mathcal{S}_4$$
: a $\rightarrow \{1/2:b,1/2:c\}$ f(x,x) $\rightarrow \{1:f(a,a)\}$

AST? No:

$$\{1: f(a,a)\} \rightrightarrows_{\mathcal{S}_4} \{1: f(a,a)\} \rightrightarrows_{\mathcal{S}_4} \dots$$

Does non-overlapping and right-linear suffice? \rightarrow No!

$$\mathcal{S}_4$$
: a $\rightarrow \{1/2:b,1/2:c\}$ $f(x,x) \rightarrow \{1:f(a,a)\}$

AST? No:

$$\{1: \mathsf{f}(\mathsf{a},\mathsf{a})\} \rightrightarrows_{\mathcal{S}_4} \{1: \mathsf{f}(\mathsf{a},\mathsf{a})\} \rightrightarrows_{\mathcal{S}_4} \dots$$

$$\{1: f(a, a)\}$$

Does non-overlapping and right-linear suffice? \rightarrow No!

$$\mathcal{S}_4$$
:
 $\mathbf{a} \rightarrow \{\frac{1}{2} : \mathbf{b}, \frac{1}{2} : \mathbf{c}\}$
 $\mathbf{f}(x,x) \rightarrow \{1 : \mathbf{f}(\mathbf{a},\mathbf{a})\}$

AST? No:

$$\{1:f(a,a)\} \rightrightarrows_{\mathcal{S}_4} \{1:f(a,a)\} \rightrightarrows_{\mathcal{S}_4} \dots$$

$$\{1:f({\color{red} a},a)\} \stackrel{i}{\Longrightarrow}_{\mathcal{S}_4} \{{\color{blue} 1/2}:f(b,a),{\color{blue} 1/2}:f(c,a)\}$$

Does non-overlapping and right-linear suffice? \rightarrow No!

$$\begin{array}{cccc} \mathbf{S}_4 \colon & & \mathbf{a} & \rightarrow & \{\frac{1}{2} : \mathbf{b}, \frac{1}{2} : \mathbf{c}\} \\ & & \mathbf{f}(x, x) & \rightarrow & \{1 : \mathbf{f}(\mathbf{a}, \mathbf{a})\} \end{array}$$

AST? No:

$$\{1:f(a,a)\}
ightrightarrows_{\mathcal{S}_4} \{1:f(a,a)\}
ightharpoons_{\mathcal{S}_4} \dots$$

$$\{1: f(a,a)\} \stackrel{i}{\rightrightarrows}_{\mathcal{S}_4} \{\frac{1}{2}: f(b,a), \frac{1}{2}: f(c,a)\}$$

$$\stackrel{i}{\rightrightarrows}_{\mathcal{S}_4} \{\frac{1}{4}: f(b,b), \frac{1}{4}: f(c,b), \frac{1}{4}: f(b,c), \frac{1}{4}: f(c,c)\}$$

Does non-overlapping and right-linear suffice? \rightarrow No!

$$\mathcal{S}_4$$
:
 $\begin{array}{ccc} \mathsf{a} & \to & \{1/2:\mathsf{b},1/2:\mathsf{c}\} \\ \mathsf{f}(x,x) & \to & \{1:\mathsf{f}(\mathsf{a},\mathsf{a})\} \end{array}$

AST? No:

$$\{1:f(a,a)\}
ightrightarrows_{\mathcal{S}_4} \{1:f(a,a)\}
ightharpoons_{\mathcal{S}_4} \dots$$

$$\{1: f(a,a)\} \stackrel{i}{\rightrightarrows}_{\mathcal{S}_4} \{\frac{1}{2}: f(b,a), \frac{1}{2}: f(c,a)\}$$

$$\stackrel{i}{\rightrightarrows}_{\mathcal{S}_4} \{\frac{1}{4}: f(b,b), \frac{1}{4}: f(c,b), \frac{1}{4}: f(b,c), \frac{1}{4}: f(c,c)\}$$

Left-Linear

Left-Linear

• $\mathcal S$ is left-linear iff for all $\ell \to \mu \in \mathcal S$, ℓ is linear

Left-Linear

• ${\mathcal S}$ is left-linear iff for all $\ell \to \mu \in {\mathcal S}, \, \ell$ is linear

Thm.1

If S is non-overlapping, left-linear, and right-linear, then:

 \mathcal{S} is AST \iff \mathcal{S} is iAST

- Relating different evaluation strategies for TRSs (non-overlapping)
- 2 Relating different evaluation strategies for probabilistic TRSs (linear)
- Improving on right-linearity
- Improving on left-linearity

$$\mathcal{S}_2$$
: g \rightarrow $\{3/4: f(g), 1/4: 0\}$ AST? No $f(x) \rightarrow \{1: c(x,x)\}$ iAST? Yes

 \mathcal{S}_2' : $\begin{array}{ccc} g & \to & \{3/4:f(0),1/4:g\} \\ f(x) & \to & \{1:c(x,x)\} \end{array}$ **AST? Yes** iAST? Yes

$$\mathcal{S}_2'$$
: g \rightarrow {3/4: f(0), 1/4: g} AST? Yes f(x) \rightarrow {1: c(x,x)} iAST? Yes

AST? Yes:

$$\mathcal{S}_2'$$
: g \rightarrow $\{3/4: f(0), 1/4: g\}$ AST? Yes $f(x) \rightarrow \{1: c(x,x)\}$ iAST? Yes

AST? Yes: directly applying the f-rule:

AST? Yes: directly applying the f-rule:

$$\mathcal{S}_3' \colon \qquad \qquad g \quad \rightarrow \quad \{ {}^3\!/{}_4 : c(0,0), {}^1\!/{}_4 : g \}$$

AST? Yes: directly applying the f-rule:

$$\mathcal{S}_3' \colon \qquad \qquad g \quad \rightarrow \quad \{ {}^3\!/{}_4 : c(0,0), {}^1\!/{}_4 : g \}$$

No duplication of reducible functions!

Definition (Defined Symbols, Basic Terms)

- f is defined if there exists a rule $f(t_1, \ldots, t_n) \to \mu \in \mathcal{S}$, otherwise it is a constructor
- $f(t_1, \ldots, t_n)$ basic if f is defined and t_i only contains constructors

Definition (Defined Symbols, Basic Terms)

- f is defined if there exists a rule $f(t_1, \ldots, t_n) \to \mu \in \mathcal{S}$, otherwise it is a constructor
- $f(t_1, \ldots, t_n)$ basic if f is defined and t_i only contains constructors
- plus(0, 0) is basic

Definition (Defined Symbols, Basic Terms)

- f is defined if there exists a rule $f(t_1, \ldots, t_n) \to \mu \in \mathcal{S}$, otherwise it is a constructor
- $f(t_1, \ldots, t_n)$ basic if f is defined and t_i only contains constructors
- plus(0, 0) is basic
- plus(plus(0,0),0) is not basic

Definition (Defined Symbols, Basic Terms)

- f is defined if there exists a rule $f(t_1, \ldots, t_n) \to \mu \in \mathcal{S}$, otherwise it is a constructor
- $f(t_1, \ldots, t_n)$ basic if f is defined and t_i only contains constructors

Definition (Spareness)

Let $\ell \to \{p_1 : r_1, \dots, p_k : r_k\} = \mu \in S$.

- $\ell\sigma \to_{\mathcal{S}} \mu\sigma$ is spare if $\sigma(\mathbf{x})$ is in normal form whenever \mathbf{x} occurs more than once in r:
- \bullet S is spare if only spare rewrite steps are possible if one starts with a basic term $f(t_1, \ldots, t_n)$

Definition (Defined Symbols, Basic Terms)

- f is defined if there exists a rule $f(t_1, \ldots, t_n) \to \mu \in \mathcal{S}$, otherwise it is a constructor
- $f(t_1, \ldots, t_n)$ basic if f is defined and t_i only contains constructors

Definition (Spareness)

Let $\ell \to \{p_1 : r_1, \dots, p_k : r_k\} = \mu \in \mathcal{S}$.

- $\ell\sigma \to_{\mathcal{S}} \mu\sigma$ is spare if $\sigma(\mathbf{x})$ is in normal form whenever \mathbf{x} occurs more than once in r:
- \bullet S is spare if only spare rewrite steps are possible if one starts with a basic term $f(t_1, \ldots, t_n)$

$$\{1:\mathsf{f}(0)\} \overset{(\mathsf{spare})}{\rightrightarrows_{\mathcal{S}_2'}} \{1:\mathsf{c}(0,0)\}$$

Definition (Defined Symbols, Basic Terms)

- f is defined if there exists a rule $f(t_1, \ldots, t_n) \to \mu \in \mathcal{S}$, otherwise it is a constructor
- $f(t_1, \ldots, t_n)$ basic if f is defined and t_i only contains constructors

Definition (Spareness)

Let $\ell \to \{p_1 : r_1, \dots, p_k : r_k\} = \mu \in \mathcal{S}$.

- $\ell\sigma \to_{\mathcal{S}} \mu\sigma$ is spare if $\sigma(\mathbf{x})$ is in normal form whenever \mathbf{x} occurs more than once in r:
- \bullet S is spare if only spare rewrite steps are possible if one starts with a basic term $f(t_1, \ldots, t_n)$

$$\{1:\mathsf{f}(0)\} \overset{(\mathsf{spare})}{\rightrightarrows_{\mathcal{S}_2'}} \{1:\mathsf{c}(0,0)\}$$

spareness + basic start term \implies never duplicate defined functions.

Conditions for Equivalence of AST (3) and (4)

Thm.1

If S is non-overlapping, left-linear, and right-linear, then:

S is AST \iff S is iAST

Conditions for Equivalence of AST (3) and (4)

Thm.1

If S is non-overlapping, left-linear, and right-linear, then:

S is AST \iff S is iAST

Thm.2

If S is non-overlapping, left-linear, and spare, then:

 \mathcal{S} is AST on basic terms $\iff \mathcal{S}$ is iAST on basic terms

Improving on Left-Linearity

- Relating different evaluation strategies for TRSs (non-overlapping)
- Relating different evaluation strategies for probabilistic TRSs (linear)
- Improving on right-linearity
- Improving on left-linearity

$$\mathcal{S}_4$$
: a $\rightarrow \{1/2:b,1/2:c\}$ f(x,x) $\rightarrow \{1:f(a,a)\}$

AST? No:

$$\{1:f(\mathsf{a},\mathsf{a})\} \rightrightarrows_{\mathcal{S}_4} \{1:f(\mathsf{a},\mathsf{a})\} \rightrightarrows_{\mathcal{S}_4} \dots$$

$$\begin{aligned} \{1:f(a,a)\} &\overset{i}{\Longrightarrow}_{\mathcal{S}_4} \; \{\frac{1}{2}:f(b,a),\frac{1}{2}:f(c,a)\} \\ &\overset{i}{\Longrightarrow}_{\mathcal{S}_4} \; \{\frac{1}{4}:f(b,b),\frac{1}{4}:f(c,b),\frac{1}{4}:f(b,c),\frac{1}{4}:f(c,c)\} \end{aligned}$$

Simultaneous Rewriting

$$\mathcal{S}_4$$
: a $\rightarrow \{1/2:b,1/2:c\}$ f(x,x) $\rightarrow \{1:f(a,a)\}$

AST? No:

$$\{1:f(\mathsf{a},\mathsf{a})\} \rightrightarrows_{\mathcal{S}_4} \{1:f(\mathsf{a},\mathsf{a})\} \rightrightarrows_{\mathcal{S}_4} \dots$$

Innermost AST? Yes:

$$\begin{aligned} \{1:f(a,a)\} &\overset{i}{\Longrightarrow}_{\mathcal{S}_4} \; \{\frac{1}{2}:f(b,a),\frac{1}{2}:f(c,a)\} \\ &\overset{i}{\Longrightarrow}_{\mathcal{S}_4} \; \{\frac{1}{4}:f(b,b),\frac{1}{4}:f(c,b),\frac{1}{4}:f(b,c),\frac{1}{4}:f(c,c)\} \end{aligned}$$

AST w.r.t. \rightarrowtail_S ? No:

Simultaneous Rewriting

AST? No:

$$\{1:f(a,a)\} \rightrightarrows_{\mathcal{S}_4} \{1:f(a,a)\} \rightrightarrows_{\mathcal{S}_4} \dots$$

Innermost AST? Yes:

$$\begin{cases} 1: f(a,a) \} \stackrel{i}{\Longrightarrow}_{\mathcal{S}_4} \{ \frac{1}{2}: f(b,a), \frac{1}{2}: f(c,a) \} \\ \stackrel{i}{\Longrightarrow}_{\mathcal{S}_4} \{ \frac{1}{4}: f(b,b), \frac{1}{4}: f(c,b), \frac{1}{4}: f(b,c), \frac{1}{4}: f(c,c) \} \end{cases}$$

AST w.r.t. \rightarrowtail_S ? No:

$$\{1: f(a,a)\} \stackrel{i}{\Longrightarrow}_{\mathcal{S}_4} \{1/2: f(b,b), 1/2: f(c,c)\} \stackrel{i}{\Longrightarrow}_{\mathcal{S}_4} \dots$$

Thm.1

If S is non-overlapping, left-linear, and right-linear, then:

S is AST \iff S is iAST

Thm.1

If S is non-overlapping, left-linear, and right-linear, then:

S is AST \iff S is iAST

Thm.3

If S is non-overlapping and right-linear, then:

$$\mathcal{S}$$
 is AST $\Longleftarrow \mathcal{S}$ is iAST w.r.t. $\rightarrowtail_{\mathcal{S}}$

$\mathsf{Thm}.1$

If S is non-overlapping, left-linear, and right-linear, then:

 \mathcal{S} is AST $\iff \mathcal{S}$ is iAST

Thm.3

If S is non-overlapping and right-linear, then:

$$\mathcal{S}$$
 is AST $\Longleftarrow \mathcal{S}$ is iAST w.r.t. $\rightarrowtail_{\mathcal{S}}$

Thm.4

If S is non-overlapping and spare, then:

 \mathcal{S} is AST on basic terms $\longleftarrow \mathcal{S}$ is iAST w.r.t. $\rightarrowtail_{\mathcal{S}}$ on basic terms

$\mathsf{Thm}.1$

If S is non-overlapping, left-linear, and right-linear, then:

 \mathcal{S} is AST $\iff \mathcal{S}$ is iAST

Thm.3

If S is non-overlapping and right-linear, then:

$$\mathcal{S}$$
 is AST $\Longleftarrow \mathcal{S}$ is iAST w.r.t. $\rightarrowtail_{\mathcal{S}}$

Thm.4

If S is non-overlapping and spare, then:

 \mathcal{S} is AST on basic terms $\iff \mathcal{S}$ is iAST w.r.t. $\rightarrowtail_{\mathcal{S}}$ on basic terms

There exists powerful tools for iAST w.r.t. $\rightarrowtail_{\mathcal{S}}$

Implementation and Experiments

- Fully implemented in AProVE
- Evaluated on 118 benchmarks with 91 successful iAST proofs

Proofs for AST:

Old AProVE	36
Thm.1 (LL $+$ RL)	48
Thm.3 $(\rightarrowtail_{\mathcal{S}} + RL)$	44
New AProVE	49
Thm.2 (LL+spare)	58
Thm.4 ($\rightarrowtail_{\mathcal{S}}$ +spare)	56
New AProVE	61

- Arbitrary start term
- Basic start term

```
\begin{array}{ccc} \mathsf{loop}(x) & \to & {}^1\!/2 : \mathsf{loop}(\mathsf{double}(x)), {}^1\!/2 : \mathsf{loop}2(x) \\ \mathsf{loop}2(\mathsf{s}(x)) & \to & 1 : \mathsf{loop}2(x) \\ \mathsf{double}(0) & \to & 1 : 0 \\ \mathsf{double}(\mathsf{s}(x)) & \to & 1 : \mathsf{s}(\mathsf{s}(\mathsf{double}(x))) \end{array}
```

 \bullet Relations between different evaluation strategies.

• Relations between different evaluation strategies.

Thm.1

If S is non-overlapping, left-linear, and right-linear, then:

 \mathcal{S} is AST \iff \mathcal{S} is iAST

• Relations between different evaluation strategies.

Thm.1

If S is non-overlapping, left-linear, and right-linear, then:

$$\mathcal{S}$$
 is AST $\Longleftrightarrow \mathcal{S}$ is iAST

• Removing Right-linearity: basic start terms + spareness

$$\{1: f(t_1,\ldots,t_n)\} \rightrightarrows \ldots$$

Relations between different evaluation strategies.

$\mathsf{Thm}.1$

If S is non-overlapping, left-linear, and right-linear, then:

$$\mathcal{S}$$
 is AST \iff \mathcal{S} is iAST

Removing Right-linearity: basic start terms + spareness

$$\{1: f(t_1,\ldots,t_n)\} \rightrightarrows \ldots$$

• Removing Left-linearity: simultaneous rewriting $\rightarrowtail_{\mathcal{S}}$

$$\{1: f(a,a)\} \stackrel{i}{\Longrightarrow}_{\mathcal{S}_2} \{\frac{1}{2}: f(b,b), \frac{1}{2}: f(c,c)\}$$

Relations between different evaluation strategies.

$\mathsf{Thm}.1$

If S is non-overlapping, left-linear, and right-linear, then:

$$\mathcal{S}$$
 is AST \iff \mathcal{S} is iAST

Removing Right-linearity: basic start terms + spareness

$$\{1: f(t_1,\ldots,t_n)\} \rightrightarrows \ldots$$

• Removing Left-linearity: simultaneous rewriting $\rightarrowtail_{\mathcal{S}}$

$$\{1: f(a,a)\} \stackrel{i}{\Longrightarrow}_{\mathcal{S}_2} \{\frac{1}{2}: f(b,b), \frac{1}{2}: f(c,c)\}$$

We can now lift innermost AST proofs to full AST proofs.

Relations between different evaluation strategies.

$\mathsf{Thm}.1$

If S is non-overlapping, left-linear, and right-linear, then:

$$\mathcal{S}$$
 is AST \iff \mathcal{S} is iAST

Removing Right-linearity: basic start terms + spareness

$$\{1: f(t_1,\ldots,t_n)\} \rightrightarrows \ldots$$

• Removing Left-linearity: simultaneous rewriting $\rightarrowtail_{\mathcal{S}}$

$$\{1: f(a,a)\} \stackrel{i}{\Longrightarrow}_{\mathcal{S}_2} \{\frac{1}{2}: f(b,b), \frac{1}{2}: f(c,c)\}$$

- We can now lift innermost AST proofs to full AST proofs.
- Works for PAST and SAST as well.

Relations between different evaluation strategies.

$\mathsf{Thm}.1$

If S is non-overlapping, left-linear, and right-linear, then:

$$\mathcal{S}$$
 is AST $\iff \mathcal{S}$ is iAST \mathcal{S} is PAST $\iff \mathcal{S}$ is iPAST

Removing Right-linearity: basic start terms + spareness

$$\{1: f(t_1,\ldots,t_n)\} \Longrightarrow \ldots$$

• Removing Left-linearity: simultaneous rewriting $\longrightarrow_{\mathcal{S}}$

$$\{1: f(a,a)\} \stackrel{i}{\Longrightarrow}_{\mathcal{S}_2} \{\frac{1}{2}: f(b,b), \frac{1}{2}: f(c,c)\}$$

- We can now lift innermost AST proofs to full AST proofs.
- Works for PAST and SAST as well.

Relations between different evaluation strategies.

$\mathsf{Thm}.1$

If S is non-overlapping, left-linear, and right-linear, then:

$$\mathcal{S}$$
 is AST $\iff \mathcal{S}$ is iAST \mathcal{S} is PAST $\iff \mathcal{S}$ is iPAST

Removing Right-linearity: basic start terms + spareness

$$\{1: f(t_1,\ldots,t_n)\} \rightrightarrows \ldots$$

• Removing Left-linearity: simultaneous rewriting $\longrightarrow_{\mathcal{S}}$

$$\{1: f(a,a)\} \stackrel{i}{\Longrightarrow}_{\mathcal{S}_2} \{\frac{1}{2}: f(b,b), \frac{1}{2}: f(c,c)\}$$

- We can now lift innermost AST proofs to full AST proofs.
- Works for PAST and SAST as well.
- Fully implemented in AProVE.