TRS PTRS Improving on Right-Linearity Improving on Left-Linearit Evaluation
0000000 00000000 0000 000 [e]e)

From Innermost To Full Almost-Sure
Termination of Probabilistic Term Rewriting

Jan-Christoph Kassing, Florian Frohn, and Jirgen Giesl
RWTH Aachen

April 2024

1/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
90000000 00000000 0000 000 [e]e)

Termination of TRSs

Rplus: plus(O,y) — Yy
plus(s(x).)~ s(plus(x.) J

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity
90000000 00000000 0000 000

Termination of TRSs

Rplus: plus(O,y) — Yy
plus(s(x),y) — s(plus(x, y))

Evaluation
00

plus(s(0), plus(0, 0))

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity
90000000 00000000 0000 000

Termination of TRSs

Ropius: plus(0,y) — vy
plus(s(x),y) = s(plus(x,y))

Evaluation
00

plus(s(0), plus(0, 0))

~

s(plus(0, plus(0,0)))

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity
90000000 00000000 0000 000

Termination of TRSs

Rplus: pIus(O,y) — Yy
plus(s(x),y) — s(plus(x, y))

Evaluation
00

plus(s(0), plus(0, 0))

.

s(plus(0, plus(0,0)))

s(plus(0,0))

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity
[e]e]e}

Termination of TRSs

Rplus: p|US(O,y) — Yy
plus(s(x),y) — s(plus(x, y))

Evaluation
00

plus(s(0), plus(0, 0))

.

s(plus(0, plus(0,0)))

s(plus(0,0))

|
s(0)

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
90000000 00000000 0000 000 [e]e)

Termination of TRSs

Rplus: pIus(O,y) — Yy
plus(s(x),)~ s(plus(x.»)) |

plus(s(0), plus(0, 0))

N

plus(s(0), 0) s(plus(0, plus(0, 0)))

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
90000000 00000000 0000 000 [e]e)

Termination of TRSs

Rplus: plus(O,y) — Yy
plus(s(x).y) — s(plus(x,)) |

plus(s(0), plus(0, 0))

N

plus(s(0), 0) s(plus(0, plus(0,0)))

!

s(plus(0,0)) s(plus(0,0))

|
s(0)

TRS PTRS Improving on Right-Linearity
90000000 00000000 0000 000

Termination of TRSs

Rplus: p|US(0,y) — Yy
plus(s(x),y) — s(plus(x, y))

Improving on Left-Linearity

Evaluation
00

plus(s(0), plus(0, 0))

N

plus(s(0), 0) s(plus(0, plus(0, 0)))

TRS PTRS Improving on Right-Linearity Improving on Left-Linearit

©000000 00000000

Termination of TRSs

7-\>rplus: pIus(O,y) — Yy
plus(s(x),y) — s(plus(x, y))

plus(s(0), plus(0, 0))

N

plus(s(0), 0) s(plus(0, plus(0, 0)))
! o~
s(plus(0,0)) s(plus(0,0)) s(plus(0,0))

| |
(0) 5(0)

TRS PTRS Improving on Right-Linearity Improving on Left-Linearit

©000000 00000000

Termination of TRSs

7-\>rplus: pIus(O,y) — Yy
plus(s(x),y) — s(plus(x, y))

plus(s(0), plus(0, 0))

N

plus(s(0), 0) s(plus(0, plus(0,0)))
!
s(plus(0, 0)) s(plus(0,0)) s(plus(0,0))
| | |
s(0) s(0) s(0)

2/25

Termination of TRSs
7-\>rplus: pIus(O,y) — Yy
plus(s(x).)~ s(plus(x.)) |
plus(s(0), plus(0, 0))
/ \«
plus(s(0), 0) s(plus(0, plus(0,0)))
|
s(plus(0,0)) s(plus(0,0)) s(plus(0,0))
| | |
s(0) s(0) s(0)

Innermost evaluation: always use an innermost reducible expression

2/25

TRS
®000000

Termination of TRSs

7—\>rplus: pIus(O,y) — Yy
plus(s(x).)~ s(plus(x.) |

plus(s(0), plus(0, 0))

N

plus(s(0), 0) s(plus(0, plus(0,0)))
!
s(plus(0,0)) s(plus(0,0)) s(plus(0,0))
| | |
s(0) s(0) s(0)

Innermost evaluation: always use an innermost reducible expression

Termination

R is terminating iff there is no infinite evaluation tg - t1 =R ...

2/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearit Evaluation
0e00000 00000000 0000 000 [e]e)

Termination and Complexity Analysis for Programs

TRS
0O@00000

Termination and Complexity Analysis for Programs

Java

Haskell

TRS
0O@00000

Termination and Complexity Analysis for Programs

Symbolic

Execution
Graph

TRS
0O@00000

Termination and Complexity Analysis for Programs

Symbolic

. TRS
Execution
Graph ITS

TRS
0O@00000

Termination and Complexity Analysis for Programs

Symbolic

Execution
Graph

TRS

ITS

TRS
0O@00000

Termination and Complexity Analysis for Programs

Symbolic

Execution
Graph

TRS

ITS

Complexity

3/25

TRS
0O@00000

Termination and Complexity Analysis for Programs

Java

Prolog\

I
C/

/

Haskell

Symbolic
Execution
Graph

TRS

ITS

I

Complexity

@ TRS: especially good for the analysis of algorithms concerning algebraic
structures and user-defined data structures

3/25

TRS
0O@00000

Termination and Complexity Analysis for Programs

T

T

/

TRS

I

@ TRS: especially good for the analysis of algorithms concerning algebraic
structures and user-defined data structures

@ Turing-complete programming language
= Termination is undecidable

3/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity
00e0000 00000000 0000 000

Innermost Termination vs. Termination

Ra: fa) — f(a)
a — b

Evaluation
00

4/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
00e0000 00000000 0000 000 [e]e)

Innermost Termination vs. Termination

a — b

Ro: f@) — fa) J

Terminating? No:

4/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity
000

Innermost Termination vs. Termination

Ra: fa) — f(a)
a — b

Evaluation
00

Terminating? No:

f(a)

4/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity
00e0000 00000000 0000 000

Innermost Termination vs. Termination

Ra: f(a) f(a)

_>
— b

Evaluation
00

Terminating? No:
f(a) =, f(a)

4/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity
00e0000 00000000 0000 000

Innermost Termination vs. Termination

Ra: f(a) f(a)

_>
— b

Evaluation
00

Terminating? No:
f(a) R, f(a) Ry .-

4/25

inearity Improving on Left-Linearit;

Ro: f(a)

Evaluation

Terminating? No:
f(a) R, f(a) Ry .-

Innermost Terminating? Yes:

4/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearit

Innermost Termination vs. Termination

Ra: f(a) f(a)

_>
— b

Evaluation

Terminating? No:
f(a) R, f(a) Ry .-

Innermost Terminating? Yes:

f(a)

4/25

inearity Improving on Left-Linearit;

Ra: fa) — f(a)
%

Evaluation

Terminating? No:
f(a) R, f(a) Ry .-

Innermost Terminating? Yes:

f(a) =, f(b)

4/25

TRS
00@0000

Innermost Termination vs. Termination
Ro: fa) —
_>

L(a) J

Terminating? No:
f(a) R, f(a) Ry .-

Innermost Terminating? Yes:

f(a) S+, f(b) + normal form

4/25

TRS
00@0000

t-Linearity Improving on Left-Linearit; Evaluation

Innermost Termination vs. Termination

Ro: f(a) — f(a) J
a — b

Terminating? No:
f(a) R, f(a) Ry .-

Innermost Terminating? Yes:

f(a) S+, f(b) + normal form

Termination — Innermost Termination

4/25

TRS
00@0000

Innermost Termination vs. Termination

Ro: f(a) — f(a) J
a — b

Terminating? No:
f(a) R, f(a) Ry .-

Innermost Terminating? Yes:

f(a) S+, f(b) + normal form

l Termination — Innermost Termination l

IGoal: Decidable Conditions s.t. Innermost Termination — Termination l

4/25

TRS PTRS Improving on Right-Linearity
000e000 00000000 0000

Termination of Probabilistic TRSs

Java

Prdog\\\\\\\\N Symbolic

T Execution
C —— Graph

/

Haskell

Improving on Left-Linearity Evaluation
[e]e)

TRS

ITS

I

Complexity

5/25

TRS

Improving on Right-Linearity Improving on Left-Linearit Evaluation
0008000 0000 000 0o

Termination of Probabilistic TRSs

Java

Prolog — Symbo_llc RS
Execution

C —— Graph LN —

/

Haskell

Complexity

© Relating different evaluation strategies for TRSs (non-overlapping)

5/25

TRS
000@e000

Termination of Probabilistic TRSs

T —

_—— —

/

© Relating different evaluation strategies for TRSs (non-overlapping)
@ Relating different evaluation strategies for probabilistic TRSs (linear)

5/25

TRS
000@e000

Termination of Probabilistic TRSs

T —

/ \

/

© Relating different evaluation strategies for TRSs (non-overlapping)
@ Relating different evaluation strategies for probabilistic TRSs (linear)
© Improving on right-linearity

5/25

TRS
000@e000

Termination of Probabilistic TRSs

T —

/ \

/

© Relating different evaluation strategies for TRSs (non-overlapping)
@ Relating different evaluation strategies for probabilistic TRSs (linear)
© Improving on right-linearity

@ Improving on left-linearity

5/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
000e000 00000000 0000 000 [e]e)

Termination of Probabilistic TRSs

Java
prolog§ Symbol —

Execution

/

Haskell

Complexity

© Relating different evaluation strategies for TRSs (non-overlapping)
@ Relating different evaluation strategies for probabilistic TRSs (linear)
© Improving on right-linearity

@ Improving on left-linearity

5/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
0000e00 00000000 0000 000 [e]e)

Overlapping

6/25

TRS
0000e00

Overlapping

Overlapping

o /1 — n, U > eR

6/25

TRS
0000e00

Overlapping

Overlapping

0 /i >n,lb >R ER
@ non-variable subterm ¢, of /5 such that /; and ¢ are unifiable

6/25

TRS
0000e00

Overlapping

Overlapping

0 /i >n,lb >R ER
@ non-variable subterm ¢, of /5 such that /; and ¢ are unifiable

Ro: f(a) f(a)

%
— b

6/25

TRS
0000e00

Overlapping

Overlapping

0 /i >n,lb >R ER
@ non-variable subterm ¢, of /5 such that /; and ¢ are unifiable

Ro: f(a) f(a)

%
— b

6/25

TRS
0000e00

Overlapping

Overlapping

0 /i >n,lb >R ER
@ non-variable subterm ¢, of /5 such that /; and ¢ are unifiable

Ro: f(a) f(a)

%
— b

6/25

TRS
0000e00

Overlapping

Overlapping

0 /i >n,lb >R ER
@ non-variable subterm ¢, of /5 such that /; and ¢ are unifiable

Ro: f(a) f(a)

%
— b

6/25

TRS
0000e00

Overlapping

Overlapping

0 /i >n,lb >R ER
@ non-variable subterm ¢, of /5 such that /; and ¢ are unifiable

Ro: f(a) f(a)

%
— b

6/25

TRS
0000e00

Overlapping

Overlapping

0 /i >n,lb >R ER
@ non-variable subterm ¢, of /5 such that /; and ¢ are unifiable

Ra: f(a) f(a)

%
— b

® @ ®
®

ly =a, l, =f(a), t5=a, mgu(a,a) = @

6/25

TRS
0000e00

Overlapping

Overlapping

0 /i >n,lb >R ER
@ non-variable subterm ¢, of /5 such that /; and ¢ are unifiable

Ro: f(a) f(a)

%
— b

O @ ®
®

ly =a, l, =f(a), t5=a, mgu(a,a) = @
— Ry is overlapping.

6/25

TRS
000000

Overlapping cont.

non-overlapping (ldea)

@ at most one possible rewrite step at each position

@ rewriting at another position does not interfere

7/25

TRS
000000

Overlapping cont.

non-overlapping (ldea)
@ at most one possible rewrite step at each position

@ rewriting at another position does not interfere

Reptus: plus(0,)
plus(s(x), y)

y

N
— s(plus(x, y))

7/25

TRS
000000

Overlapping cont.

non-overlapping (ldea)
@ at most one possible rewrite step at each position

@ rewriting at another position does not interfere

Repius: plus(0, y)
plus(s(x), y)

y

N
— s(plus(x, y))

7/25

TRS
000000

Overlapping cont.

non-overlapping (ldea)
@ at most one possible rewrite step at each position

@ rewriting at another position does not interfere

Repius: plus(0, y)
plus(s(x), y)

y

N
— s(plus(x, y))

— Rplus is non-overlapping.

7/25

TRS
000000

Overlapping cont.

non-overlapping (ldea)
@ at most one possible rewrite step at each position

@ rewriting at another position does not interfere

Repius: plus(0, y)
plus(s(x), y)

y

N
— s(plus(x, y))

— Rplus is non-overlapping.

Idea:

plus(s(0), plus(0, 0))

7/25

TRS
000000

Overlapping cont.

non-overlapping (ldea)
@ at most one possible rewrite step at each position

@ rewriting at another position does not interfere

Repius: plus(0, y)
plus(s(x), y)

y

N
— s(plus(x, y))

— Rplus is non-overlapping.

Idea:

plus(s(0), plus(0, 0))

© © O

7/25

TRS
000000

Overlapping cont.

non-overlapping (ldea)
@ at most one possible rewrite step at each position

@ rewriting at another position does not interfere

Repius: plus(0, y)
plus(s(x), y)

y

N
— s(plus(x, y))

— Rplus is non-overlapping.

Idea:

plus(s(0), plus(0,0))

©@ © O

7/25

TRS
000000

Overlapping cont.

non-overlapping (ldea)

@ at most one possible rewrite step at each position

@ rewriting at another position does not interfere

Repius: plus(0, y)
plus(s(x), y)

y

N
— s(plus(x, y))

— Rplus is non-overlapping.

Idea:

plus(s(0), 0) G ()

7/25

TRS
O00000e

t-Linearity Improving on Left-Linearit; Evaluation

Condition for Equivalence

Theorem [Gramlich 1995]

If R is non-overlapping then:

R is terminating <= R is innermost terminating.

8/25

PTRS Improving on Right:

nearity Improving on Left-Linearit; Evaluation
@0000000 000

Termination of Probabilistic TRSs

Java
prolog§ Symbol —

Execution

C —— Graph LN —

/

Haskell

Complexity

© Relating different evaluation strategies for TRSs (non-overlapping)
@ Relating different evaluation strategies for probabilistic TRSs (linear)
© Improving on right-linearity

@ Improving on left-linearity

9/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
0000000 0e000000 0000 000 [e]e)

Termination of Probabilistic TRSs

Rew: g(0) — {12:0, Y/2:g(g(0))} J

10/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity
0000000 0e000000 0000 000

Termination of Probabilistic TRSs

Rew: g(0) — {12:0, Y/2:g(g(0))}

Evaluation
00

Multi-Distribution: {p1:t1, ..., px it } withpi+ ...+ pc=1

10/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
0000000 0e000000 0000 000 [e]e)

Termination of Probabilistic TRSs

Rew: g(0) — {12:0, 12:g(g(0))} J

Multi-Distribution: {p1:t1, ..., px it } withpi+ ...+ pc=1

{1:g(0)}

10/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
0000000 0e000000 0000 000 [e]e)

Termination of Probabilistic TRSs

Rew: g(0) — {12:0, 12:g(g(0))} J

Multi-Distribution: {p1:t1, ..., px it } withpi+ ...+ pc=1
{1:g(0)}
SR, {Y2:0,Y2:¢%(0)}

10/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
0000000 0e000000 0000 000 [e]e)

Termination of Probabilistic TRSs

Rew: g(0) — {12:0, 12:g(g(0))} J

Multi-Distribution: {p1:t1, ..., px it } withpi+ ...+ pc=1
{1:5(0)}
SR {210, Y2:¢%(0)}
SR, {Y2:0, Ya:g(0), Ya:g’(0)}

10/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
0000000 0e000000 0000 000 [e]e)

Termination of Probabilistic TRSs

Rew: g(0) — {12:0, 12:g(g(0))} J

Multi-Distribution: {p1:t1, ..., px it } withpi+ ...+ pc=1
{1:5(0)}
=R, {Y210,3/2:¢%(0)}
SR, {Y2:0, Ya:g(0), Ya:g®(0)}
SR {210, Y810, Y51 g%(0),

10/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity

0000000 0O®@000000 0000 [e]e]e}

Termination of Probabilistic TRSs

Rew: g(0) — {12:0, 12:g(g(0))}

Evaluation
00

Multi-Distribution: {p1:t1, ..., px it } withpi+ ...+ pc=1
{1:5(0)}
SR {210, Y2:¢%(0)}
SR, {Y2:0, Ya:g(0), Ya:g’(0)}
=R, {Y2:0, Y8:0, 1/5:¢%(0), Ys:%(0), Ys:8"(0)}

10/25

PTRS
0O®@000000

Termination of Probabilistic TRSs

Riw g(0) — {Y2:0, Y2:g(g(0)})
Multi-Distribution: {p1:t1, ..., px it } withpi+ ...+ pc=1
{1:g(0)}

SR, {Y2:0,Y2:¢%(0)}

SR, {Y2:0, Ya:g(0), Ya:g’(0)}

=R, {Y2:0, Y8:0, 1/5:¢%(0), Ys:%(0), Ys:8"(0)}
Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...

e R is terminating iff there is no infinite evaluation po =% 1 =% ...

10/25

PTRS
0O®@000000

Termination of Probabilistic TRSs

Riw g(0) — {Y2:0, Y2:g(g(0)})
Multi-Distribution: {p1:t1, ..., px it } withpi+ ...+ pc=1
{1:g(0)}

SR, {Y2:0,Y2:¢%(0)}

SR, {Y2:0, Ya:g(0), Ya:g’(0)}

=R, {Y2:0, Y8:0, 1/5:¢%(0), Ys:%(0), Ys:8"(0)}
Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...

e R is terminating iff there is no infinite evaluation po == p1 == ... No

10/25

PTRS
0O®@000000

Termination of Probabilistic TRSs

Riw g(0) — {Y2:0, Y2:g(g(0)})
Multi-Distribution: {p1:t1, ..., px it } withpi+ ...+ pc=1
{1:g(0)}

SR, {Y2:0,Y2:¢%(0)}

SR, {Y2:0, Ya:g(0), Ya:g’(0)}

=R, {Y2:0, Y8:0, 1/5:¢%(0), Ys:%(0), Ys:8"(0)}
Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...]

e R is terminating iff there is no infinite evaluation po == p1 == ... No

e R is almost-surely terminating (AST)
iff limp— oo [tn| =1 for every infinite evaluation po =g p1 =% ...

10/25

PTRS
0O®@000000

Termination of Probabilistic TRSs

Row: g(0) — {Y2:0, Y2:¢g(g(0))})
Multi-Distribution: {pr:ty,...;pe:tc} withpr+...+pc=1 | |
{1:g(0)}

SR, {Y2:0,Y2:¢%(0)}

SR, {Y2:0, Ya:g(0), Ya:g’(0)}

=R, {Y2:0, Y8:0, 1/5:¢%(0), Ys:%(0), Ys:8"(0)}
Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...]

e R is terminating iff there is no infinite evaluation po == p1 == ... No

e R is almost-surely terminating (AST)
iff limp— oo [tn| =1 for every infinite evaluation po =g p1 =% ...

10/25

PTRS
0O®@000000

Termination of Probabilistic TRSs

Row: g(0) — {Y2:0, Y2:¢g(g(0))})
Multi-Distribution: {pr:ty,...;pe:tc} withpr+...+pc=1 | |
{1:g(0)} 0

SR, {Y2:0,Y2:¢%(0)}

SR, {Y2:0, Ya:g(0), Ya:g’(0)}

=R, {Y2:0, Y8:0, 1/5:¢%(0), Ys:%(0), Ys:8"(0)}
Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...]

e R is terminating iff there is no infinite evaluation po == p1 == ... No

e R is almost-surely terminating (AST)
iff limp— oo [tn| =1 for every infinite evaluation po =g p1 =% ...

10/25

PTRS
0O®@000000

Termination of Probabilistic TRSs

Row: g(0) — {Y2:0, Y2:¢g(g(0))})
Multi-Distribution: {pr:ty,...;pe:tc} withpr+...+pc=1 | |
{1:¢(0)} 0
=R, {Y2:0,Y2:8%0)} Y2

=R, {Y2:0, Ya:g(0), Ya:g*0)}
=R, {Y2:0,1s8:0, ls: g2(0), g gQ(O), /s g*(0)}
Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...

e R is terminating iff there is no infinite evaluation po == p1 == ... No

e R is almost-surely terminating (AST)
iff limp— oo [tn| =1 for every infinite evaluation po =g p1 =% ...

10/25

PTRS
0O®@000000

Termination of Probabilistic TRSs

Row: g(0) — {Y2:0, Y2:¢g(g(0))})
Multi-Distribution: {pr:ty,...;pe:tc} withpr+...+pc=1 | |
{1:¢(0)} 0
=R, {Y2:0,Y2:%0)} Y2
=R, {Y2:0, Ya:g(0), Ya:g*0)} Y2

=R, {Y2:0, Y8:0, Ys:g*(0), s : g*(0), /s : g*(0)}
Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...

e R is terminating iff there is no infinite evaluation po == p1 == ... No

e R is almost-surely terminating (AST)
iff limp—oo [tn] =1 for every infinite evaluation po =r p1 =% ...

10/25

PTRS
0O®@000000

Termination of Probabilistic TRSs

Row: g(0) — {Y2:0, Y2:¢g(g(0))})
Multi-Distribution: {pr:ty,...;pe:tc} withpr+...+pc=1 | |
{1:¢(0)} 0
=R, {Y2:0,Y2:%0)} Y2
=R, {Y2:0, Ya:g(0), Ya:g*0)} Y2

SR, {Y2:0,38:0, Yo:g(0), Ye:g®(0), Yo:g'(0)} s

Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...

e R is terminating iff there is no infinite evaluation po == p1 == ... No

e R is almost-surely terminating (AST)
iff limp— oo |[tn| =1 for every infinite evaluation po =r p1 =% ...

10/25

PTRS
0O®@000000

Termination of Probabilistic TRSs

Row: g(0) — {Y2:0, Y2:¢g(g(0))})
Multi-Distribution: {pr:ty,...;pe:tc} withpr+...+pc=1 | |
{1:¢(0)} 0
=R, {Y2:0,Y2:%0)} Y2
=R, {Y2:0, Ya:g(0), Ya:g*0)} Y2

SR, {Y2:0,38:0, Ye:g(0), Ye:g®(0), Yo:g'(0)} s

Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...

e R is terminating iff there is no infinite evaluation po == p1 == ... No

e R is almost-surely terminating (AST)
iff limp—oo [4n| =1 for every infinite evaluation po =r g1 =wr ... Yes

10/25

PTRS
0O®@000000

Termination of Probabilistic TRSs

Row: g(0) — {Y2:0, Y2:¢g(g(0))})
Multi-Distribution: {pr:ty,...;pe:tc} withpr+...+pc=1 | |
{1:¢(0)} 0
=R, {Y2:0,Y2:%0)} Y2
=R, {Y2:0, Ya:g(0), Ya:g*0)} Y2

SR, {Y2:0,38:0, Ye:g(0), Ye:g®(0), Yo:g'(0)} s

Termination for PTRSs

[Bournez & Garnier 2005, Avanzini & Dal Lago & Yamada 2019, ...

e R is terminating iff there is no infinite evaluation po == p1 == ... No
e R is almost-surely terminating (AST)
iff limp—oo [4n| =1 for every infinite evaluation po =r g1 =wr ... Yes

e positive AST (PAST) / strong AST (SAST)

10/25

TRS PTRS hnpgs; on Right-Linearity ggnggchLﬁmemmL gémwmn
Innermost AST vs. AST
Sy fla) — {1:f(a)}
a — {l:b} J
AST? No:

{1:f(d)} =5, {1:f()} =5, ---

Innermost AST? Yes:

{1:1(a)} iigsz {1 :f(b)} « normal form

11/25

Evaluation

T“ Fgli')RoSooooo Iw‘ SED BN “"7‘7‘[:)“")3‘ o Rl et
Innermost AST vs. AST
Sy fla) — {1:f(a)}
a — {l:b}
AST? No:

{1:f(d)} =5, {1:f()} =5, ---

Innermost AST? Yes:

{1:1(a)} iigsz {1 :f(b)} « normal form

Need to restrict to non-overlapping PTRSs again

11/25

PTRS
0O00e0000

Conditions for Equivalence of AST

Does non-overlapping still suffice?

12/25

PTRS
0O00e0000

Conditions for Equivalence of AST

Does non-overlapping still suffice? — No!

12/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity
000

0000000 0O00e0000 0000

Conditions for Equivalence of AST

Does non-overlapping still suffice? — No!

Sy g — {34+:f(g),Y4:0}
f(x) — {l:c(x,x)}

Evaluation
00

12/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity

0000000 0O00e0000 0000 [e]e]e}

Conditions for Equivalence of AST

Does non-overlapping still suffice? — No!

Sy g — {34+:f(g),Y4:0}
f(x) — {l:c(x,x)}

Evaluation
00

AST? No:

12/25

PTRS
0O00e0000

Conditions for Equivalence of AST

Does non-overlapping still suffice? — No!

Sy g — {34+:f(g),Y4:0}
f(x) — {l:c(x,x)} J

AST? No: directly applying the f-rule to duplicate the g's:

12/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
0000000 000e0000 0000 000 [e]e)

Conditions for Equivalence of AST

Does non-overlapping still suffice? — No!

Sa: g — {%:f(g),Y+:0}
f(x) — {l:c(x,x)} J

AST? No: directly applying the f-rule to duplicate the g's:

S g — {Ye:c(g.g)Ye: 0} J

12/25

PTRS
0O00e0000

Conditions for Equivalence of AST

Does non-overlapping still suffice? — No!

Sy g — {34+:f(g),Y4:0}
f(x) — {l:c(x,x)}

AST? No: directly applying the f-rule to duplicate the g's:

Ss: g = {3:c(gg)Y+:0}

— Biased random walk with p =3/4 > 1/2, hence not AST.

s 14

3/

3/a

12/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(j j FI/A c(fig)x)l}/4 : 0}

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(j j }31/4 C(fig)x)l}/4 : 0}

a

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(xg) j ﬁ/“ C(fig)x)l}/4 : 0}

po :

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: oy }31/4 C(fig)x)l}/4 10

Ho :

pa : |G 1)) | [Ya-3:(0)]

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(xg) - }31/4 C(fig)x)l}ﬂ 10
Ho
p
e |G 1)) | [Ya-3:1(0)]

ps: (@7 H06@))] [Gy rE0))]

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(xg) - }31/4 C(fig)x)l}ﬂ 10
o
pa
e |7 16@)| [e-30:F0)]

w0 [y () f(RO)]

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(S - }31/“ C(i((gl)l}/‘l 10}
pho :
p
e |7 16@)| [e-30:F0)]
s : |/ (57 (2))) | |v/a- (3/a)? - £(£(0)) |

|. =
om |2

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(S - }31/“ C(i((gl)l}/‘l 10}
pho :
p
e |7 16@)| [e-30:F0)]
s : |/ (57 (2))) | |v/a- (3/a)? - £(£(0)) |

lim |pue| = 3/
k—00

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(xg) : ﬁﬂ c(]cig)x)l}/4 o
tho :
p
o (Gl (i) | [0)]
pa : |/ (57 (2))) | |v/a- (3/a)? - £(£(0)) |

lim || = Y4+ 1/a-3/a
k—o0

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(xg) : flﬂ c(]cig)X)l}/4 o
o
I
o [w6e)] [70)]
pa : |/ 155 (@))) | [/ (3/0) - £(£(0))]

kli—>moo ‘Mk‘ = 1/4 + 1/4 . 3/4 + s (3/4)2

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(S - }31/“ C(i((gl)l}/‘l 10}
pho :
p
e |7 16@)| [e-30:F0)]
s : |/ (57 (2))) | |v/a- (3/a)? - £(£(0)) |

kli_)moc k| = Va4 1a - 3/a 4 1/a - (3/2)% +

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(S - }31/“ C(i((gl)l}/‘l : 0}

o'
.

o (a7 f6)] [Ye3:10)]
w2 G| [() (0]

Jim [l = Ya+ o 3fat o (P 4o = D 1a- (3fa)

i=0

13/25

PTRS
0O000@000

Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(S - }31/“ C(i((gl)l}/‘l : 0}

o'
.

o (a7 f6)] [Ye3:10)]
w2 G| [() (0]

Nim] = Ya ot Yo 3at Yo (3fa) 4 =D Ya (3a) =1

i=0

13/25

PTRS
0O0000e00

Right-Linear

Right-Linear

14/25

PTRS
0O0000e00

Right-Linear

Right-Linear

e t is linear iff no variable occurs more than once in t
® {p1:ty,...,pk: te} is linear iff t;,..., tx are linear
@ S is right-linear iff for all £ — ;1 € S, pu is linear

14/25

PTRS
0O0000e00

Right-Linear

Right-Linear
e t is linear iff no variable occurs more than once in t
® {p1:ty,...,pk: te} is linear iff t;,..., tx are linear
@ S is right-linear iff for all £ — ;1 € S, pu is linear

822 g
f(x)

{3/ : f(g), ¥+ : 0}
{1:c(x,x)}

_>
_>

14/25

PTRS
0O0000e00

Right-Linear

Right-Linear
e t is linear iff no variable occurs more than once in t
® {p1:ty,...,pk: te} is linear iff t;,..., tx are linear
@ S is right-linear iff for all £ — ;1 € S, pu is linear

822 g
f(x)

{3/4: f(g), /4 : 0}
{1:c(x,x)}

_>
_>

14/25

PTRS
0O0000e00

Right-Linear

Right-Linear
e t is linear iff no variable occurs more than once in t
® {p1:ty,...,pk: te} is linear iff t;,..., tx are linear
@ S is right-linear iff for all £ — ;1 € S, pu is linear

é;zi g
f(x)

{3/ : f(g), ¥+ : 0}
{1:c(x,x)}

_>
_>

— &, is not right-linear.

14/25

PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice?

15/25

PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

15/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity

0000000 0O00000e0 0000 [e]e]e}

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1:f(a,a)}

Evaluation
00

15/25

TRS PTRS Improving on Right-Linearity

nproving on Left-Linearit:
0000000 00000000)0

w

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1:f(a,a)}

Evaluation

(e}

AST? No:

15/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearit
0000000 00000000 0000 000

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1:f(a,a)}

Evaluation

AST? No:
{1:f(a,a)}

15/25

TRS PTRS Improving on Right-Linearity
0000000 00000080 0000 000

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1l:f(a,a)}

Improving on Left-Linearity

Evaluation
00

AST? No:
{1:f(a,a)} =5, {1:f(a,a)}

15/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearit
0000000 00000080 0000 000

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1l:f(a,a)}

Evaluation
00

AST? No:
{1:f(a,a)} =g, {1:f(a,3)} =s, ---

15/25

PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1:f(a,a)}

AST? No:

{1:f(a,a)} =g, {1:f(a,3)} =s, ---

Innermost AST? Yes:

15/25

PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1:f(a,a)} J

AST? No:
{1:f(a,a)} =g, {1:f(a,3)} =s, ---

Innermost AST? Yes:

{1:f(a,a)}

15/25

PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,12:c}
f(x,x) — {1:f(a,a)} J

AST? No:
{1:f(a,a)} =g, {1:f(a,3)} =s, ---

Innermost AST? Yes:

{1:(a,a)} s, {1/2: f(b,a),1/2 : f(c,a)}

15/25

PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,12:c}
f(x,x) — {1:f(a,a)}

AST? No:

{1:f(a,a)} =g, {1:f(a,3)} =s, ---

Innermost AST? Yes:

{1:f(a,a)} =25, {1/2: f(b,a),/2: f(c,a)}

':§54 {Y/a : f(b,b), /4 : f(c,b), Y4 : f(b,c), /4 : f(c,c)}

15/25

PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1:f(a,a)}

AST? No:

{1:f(a,a)} =g, {1:f(a,3)} =s, ---

Innermost AST? Yes:

{1:f(a,a)} s, {1/2: f(b,a),/2: f(c,a)}

':§54 {Y/a : f(b,b), /4 : f(c,b), Y4 : f(b,c), /4 : f(c,c)}

15/25

< PTRS
0000000 00000008

t-Linearit Improving on Left-Linearit; Evaluation

Conditions for Equivalence of AST

_

16/25

TRS PTRS Improving on Right-Linearit Improving on Left-Linearit Evaluatio

0000000 0000000@

Conditions for Equivalence of AST

o S is left-linear iff for all ¢ — p € S, (is linear

16/25

PTRS
O000000e

Conditions for Equivalence of AST

o S is left-linear iff for all ¢ — p € S, (is linear

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

16/25

Improving on Right-Linearity
0000

Improving on Right-Linearity

Java
pmlog§ Symbolic —

Execution

C —— Graph LN —

/

Haskell

Complexity

© Relating different evaluation strategies for TRSs (non-overlapping)
@ Relating different evaluation strategies for probabilistic TRSs (linear)
© Improving on right-linearity

@ Improving on left-linearity

17/25

TRS PTRS Improving on Right-Linearity
0000000 00000000 0@00

Spareness

Sa: g — {34:f(g),Y/a:0}
f(x) = {l:c(x,x)}

Improving on Left-Linearity

AST? No
iAST? Yes

Evaluation
00

18/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
0000000 00000000 0@00 000 [e]e)

Spareness
Sy g — {34:f(g),Y/4:0} AST? No
f(x) — {l:c(x,x)} iAST? Yes J
Sy g — {34:1(0),Ya:g} AST? Yes
f(x) — {1:c(x,x)} IAST? Yes J

18/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
0000000 00000000 0@00 000 [e]e)

Spareness
Sy g — {34:f(g),Y/4:0} AST? No
f(x) — {l:c(x,x)} IAST? Yes J
Sy g — {3/4:1(0),%a:g} AST? Yes
f(x) — {1:c(x,x)} IAST? Yes J
AST? Yes:

18/25

I)%Sooooo ZTOROSOOOOO |g1:g)gng on Right-Linearity Improving on Left-Linearity E)vghmt\on
Spareness
Sa: g — {3/4:f(g),Ya:0} AST? No
f(x) = {l:c(x,x)} iAST? Yes J
S g — {34:1(0),Ya: g} AST? Yes
f(x) — {l:c(x,x)} iAST? Yes

AST? Yes: directly applying the f-rule:

18/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
0000000 00000000 0@00 000 [e]e)

Spareness
Sy g — {34:f(g),Y/4:0} AST? No
f(x) — {l:c(x,x)} IAST? Yes J
Sy g — {3/4:1(0),%a:g} AST? Yes
f(x) — {1:c(x,x)} IAST? Yes J

AST? Yes: directly applying the f-rule:

S4: g — {3/4:¢(0,0),Ys:g} J

18/25

TRS PTRS Improving on Right-Linearity
0000000 00000000 0@00

Improving on Left-Linearity

Evaluation
00

Spareness
Sy g — {34:f(g),Y/4:0} AST? No
f(x) — {l:c(x,x)} IAST? Yes
Sy g — {3/4:1(0),%a:g} AST? Yes
f(x) — {1:c(x,x)} iAST? Yes

AST? Yes: directly applying the f-rule:

S5 g — {34:¢(0,0),Y/4:g}

No duplication of reducible functions!

(e

18/25

Improving on Right-Linearity
ooeo

Spareness

Definition (Defined Symbols, Basic Terms)

o f is defined if there exists a rule (t1,...,t,) = p € S, otherwise it
is a constructor

e f(t1,...,t,) basic if f is defined and t; only contains constructors

19/25

Improving on Right-Linearity
ooeo

Spareness

Definition (Defined Symbols, Basic Terms)

o f is defined if there exists a rule (t1,...,t,) = p € S, otherwise it
is a constructor

e f(t1,...,t,) basic if f is defined and t; only contains constructors

@ plus(0,0) is basic

19/25

Improving on Right-Linearity
ooeo

Spareness

Definition (Defined Symbols, Basic Terms)

o f is defined if there exists a rule (t1,...,t,) = p € S, otherwise it
is a constructor

e f(t1,...,t,) basic if f is defined and t; only contains constructors

@ plus(0,0) is basic
@ plus(plus(0,0),0) is not basic

19/25

Improving on Right-Linearity
ooeo

Spareness

Definition (Defined Symbols, Basic Terms)

o f is defined if there exists a rule (t1,...,t,) = p € S, otherwise it
is a constructor

o f(t1,...,t,) basic if f is defined and ¢; only contains constructors

Definition (Spareness)

Let £ > {p1:r,...,pk: 1k} =p€ES.
@ (o —s po is spare if o(x) is in normal form whenever x occurs more
than once in r;

@ S is spare if only spare rewrite steps are possible if one starts with a
basic term f(t1,...,t,)

A

19/25

Improving on Right-Linearity
ooeo

Spareness

Definition (Defined Symbols, Basic Terms)

o f is defined if there exists a rule (t1,...,t,) = p € S, otherwise it
is a constructor

o f(t1,...,t,) basic if f is defined and ¢; only contains constructors

Definition (Spareness)

Let £ > {p1:r,...,pk: 1k} =p€ES.
@ (o —s po is spare if o(x) is in normal form whenever x occurs more
than once in r;

@ S is spare if only spare rewrite steps are possible if one starts with a
basic term f(t1,...,t,)

A

spare

{1: f(O)}(:Kg)z/ {1:¢(0,0)}

19/25

Improving on Right-Linearity
ooeo

Spareness

Definition (Defined Symbols, Basic Terms)

o f is defined if there exists a rule f(t1,...,t,) = u € S, otherwise it
is a constructor

o f(t1,...,t,) basic if f is defined and ¢; only contains constructors

Definition (Spareness)

Let £ > {p1:n,...,pk 1k} =p€ES.
@ lo —s o is spare if o(x) is in normal form whenever x occurs more
than once in r;
@ S is spare if only spare rewrite steps are possible if one starts with a
basic term f(ty,...,t,)

A

spare

{1: f(O)}(:?s)z’ {1:¢(0,0)}

spareness + basic start term — never duplicate defined functions.

19/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearit
0000000 00000000 000@ 000

Conditions for Equivalence of AST (3) and (4)

If S is non-overlapping, left-linear, and right-linear, then:

Evaluation

S is AST < S is iAST

20/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearit
0000000 00000000 000@ 000

Conditions for Equivalence of AST (3) and (4)

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

A

If S is non-overlapping, left-linear, and spare, then:

S is AST on basic terms <= S is iAST on basic terms

.

20/25

Improving on Left-Linearity

Improving on Left-Linearity

Java
pmlog§ Symbolic —

Execution

C —— Graph LN —

/

Haskell

Complexity

© Relating different evaluation strategies for TRSs (non-overlapping)
@ Relating different evaluation strategies for probabilistic TRSs (linear)
© Improving on right-linearity

@ Improving on left-linearity

21/25

Improving on Left-Linearity
oeo

Simultaneous Rewriting

Sa: a — {Y2:b,Y2:c}
f(x,x) — {1:f(a,a)} J

AST? No:
{1:f(a,a)} =s, {1:f(5,3)} =s, - .-

Innermost AST? Yes:

{1:f(a,a)} s, {1/2: f(b,a),1/2: f(c,a)}
S, {1a: f(b,b), a : f(c,b), /s : f(b,c), Ya: f(c,c)}

22/25

Improving on Left-Linearity
oeo

Simultaneous Rewriting

Sa: a — {Y2:b,Y2:c}
f(x,x) — {1:f(a,a)}

AST? No:
{1:f(a,a)} =s, {1:f(5,3)} =s, - .-

Innermost AST? Yes:

{1:f(a,a)} s, {1/2: f(b,a),1/2: f(c,a)}
S, {1a: f(b,b), a : f(c,b), /s : f(b,c), Ya: f(c,c)}

AST w.r.t. —s? No:

22/25

Improving on Left-Linearity
oeo

Simultaneous Rewriting

Sa: a — {Y2:b,Y2:c}
f(x,x) — {1:f(a,a)} J

AST? No:
{1:f(a,a)} =s, {1:f(5,3)} =s, - .-

Innermost AST? Yes:

{1:f(a,a)} s, {1/2: f(b,a),1/2: f(c,a)}
S, {1a: f(b,b), a : f(c,b), /s : f(b,c), Ya: f(c,c)}

AST w.r.t. —s? No:

{1:f(a,a) &34 {12 : f(b,b), /2 : f(c,c)} &34

22/25

PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
"""" 0000 ooe 00

Conditions for Equivalence of AST (2)

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

23/25

TRS PTRS Improving on Right-Linearit Improving on Left-Linearity Evaluatiol
0000 ooe 00

Conditions for Equivalence of AST (2)

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

.

If S is non-overlapping and right-linear, then:

S is AST <= S is iAST w.r.t. —gs

.

23/25

Improving on Left-Linearity

Conditions for Equivalence of AST (2)

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

.

If S is non-overlapping and right-linear, then:

S is AST <= S is iAST w.r.t. —gs

.

If S is non-overlapping and spare, then:

S is AST on basic terms <— S is iAST w.r.t. — s on basic terms

23/25

Improving on Left-Linearity

Conditions for Equivalence of AST (2)

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

.

If S is non-overlapping and right-linear, then:

S is AST <= S is iAST w.r.t. —gs

.

If S is non-overlapping and spare, then:

S is AST on basic terms <— S is iAST w.r.t. — s on basic terms

There exists powerful tools for iAST w.r.t. —g

23/25

TRS PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
0000000 00000000 0000 000 [o)

Implementation and Experiments

o Fully implemented in AProVE
@ Evaluated on 118 benchmarks with 91 successful iAST proofs

Proofs for AST:

Old AProVE 36
Thm.1 (LL + RL) 48
Thm.3 (—s+RL) 44

@ Arbitrary start term

New AProVE 49
@ Basic start term
loop(x) — /2 loop(double(x)),1/2 : loop2(x)
loop2(s(x)) — 1:loop2(x)
double(0) — 1:0
double(s(x)) — 1 :s(s(double(x)))

24 /25

Evaluation
oe

Conclusion

@ Relations between different evaluation strategies.

25 /25

Improving on Right-Linearity Improving on Left-Linearit Evaluation
oe

Conclusion

@ Relations between different evaluation strategies.

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

25 /25

Improving on Right-Linearit Improving on Left-Linearit Evaluation
oe

Conclusion

@ Relations between different evaluation strategies.

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

o Removing Right-linearity: basic start terms + spareness

{1:f(tr,...,ta)} = ...

25 /25

Evaluation
oe

Conclusion

@ Relations between different evaluation strategies.

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

o Removing Right-linearity: basic start terms + spareness

{1:f(tr,...,ta)} = ...

o Removing Left-linearity: simultaneous rewriting — s

{1:f(a,a)} I35, {21 f(b,b), Y/2: f(c,)}

25 /25

Evaluation
oe

Conclusion

@ Relations between different evaluation strategies.

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

o Removing Right-linearity: basic start terms + spareness

{1:f(tr,...,ta)} = ...

o Removing Left-linearity: simultaneous rewriting — s

{1:f(a,a)} I35, {21 f(b,b), Y/2: f(c,)}

@ We can now lift innermost AST proofs to full AST proofs.

25 /25

Evaluation
oe

Conclusion

@ Relations between different evaluation strategies.

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

o Removing Right-linearity: basic start terms + spareness

{1:f(tr,...,ta)} = ...

o Removing Left-linearity: simultaneous rewriting — s

{1:f(a,a)} I35, {21 f(b,b), Y/2: f(c,)}

@ We can now lift innermost AST proofs to full AST proofs.
@ Works for PAST and SAST as well.

25 /25

Evaluation
oe

Conclusion

@ Relations between different evaluation strategies.

If S is non-overlapping, left-linear, and right-linear, then:

S is AST <= S is iAST
S is PAST < S is iPAST

o Removing Right-linearity: basic start terms + spareness

{1:f(tr,...,ta)} = ...

o Removing Left-linearity: simultaneous rewriting — s

{1:f(a,a)} I35, {2 f(b,b), Y/2: f(c,)}

@ We can now lift innermost AST proofs to full AST proofs.
@ Works for PAST and SAST as well.

25 /25

Evaluation
oe

Conclusion

@ Relations between different evaluation strategies.

If S is non-overlapping, left-linear, and right-linear, then:

S is AST <= S is iAST
S is PAST < S is iPAST

o Removing Right-linearity: basic start terms + spareness

{1:f(tr,...,ta)} = ...

o Removing Left-linearity: simultaneous rewriting — s

{1:f(a,a)} I35, {2 f(b,b), Y/2: f(c,)}

@ We can now lift innermost AST proofs to full AST proofs.
@ Works for PAST and SAST as well.
o Fully implemented in AProVE.

25 /25

	TRS
	PTRS
	Improving on Right-Linearity
	Improving on Left-Linearity
	Evaluation

