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Sy fla) — {1:f(a)}
a — {l:b} J
AST? No:

{1:f(d)} =5, {1:f()} =5, ---

Innermost AST? Yes:

{1:1(a)} iigsz {1 :f(b)} « normal form
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Innermost AST vs. AST
Sy fla) — {1:f(a)}
a — {l:b}
AST? No:

{1:f(d)} =5, {1:f()} =5, ---

Innermost AST? Yes:

{1:1(a)} iigsz {1 :f(b)} « normal form

Need to restrict to non-overlapping PTRSs again
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Conditions for Equivalence of AST

Does non-overlapping still suffice? — No!
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Conditions for Equivalence of AST

Does non-overlapping still suffice? — No!

Sy g — {34+:f(g),Y4:0}
f(x) — {l:c(x,x)}

AST? No: directly applying the f-rule to duplicate the g's:

Ss: g = {3:c(gg)Y+:0}

— Biased random walk with p =3/4 > 1/2, hence not AST.

s 14

3/

3/a
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Conditions for Equivalence of AST cont.

Innermost AST? Yes: f(S - }31/“ C(i((gl)l}/‘l : 0}
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w2 G| [ () (0]
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Right-Linear
e t is linear iff no variable occurs more than once in t
® {p1:ty,...,pk: te} is linear iff t;,..., tx are linear
@ S is right-linear iff for all £ — ;1 € S, pu is linear

é;zi g
f(x)

{3/ : f(g), ¥+ : 0}
{1:c(x,x)}

_>
_>

— &, is not right-linear.
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Improving on Left-Linearity

Evaluation
00
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15/25



TRS PTRS Improving on Right-Linearity Improving on Left-Linearit
0000000 00000080 0000 000

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1l:f(a,a)}

Evaluation
00

AST? No:
{1:f(a,a)} =g, {1:f(a,3)} =s, ---

15/25



PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1:f(a,a)}

AST? No:

{1:f(a,a)} =g, {1:f(a,3)} =s, ---

Innermost AST? Yes:

15/25



PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1:f(a,a)} J

AST? No:
{1:f(a,a)} =g, {1:f(a,3)} =s, ---

Innermost AST? Yes:

{1:f(a,a)}

15/25



PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,12:c}
f(x,x) — {1:f(a,a)} J

AST? No:
{1:f(a,a)} =g, {1:f(a,3)} =s, ---

Innermost AST? Yes:

{1:(a,a)} s, {1/2: f(b,a),1/2 : f(c,a)}

15/25



PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,12:c}
f(x,x) — {1:f(a,a)}

AST? No:

{1:f(a,a)} =g, {1:f(a,3)} =s, ---

Innermost AST? Yes:

{1:f(a,a)} =25, {1/2: f(b,a),/2: f(c,a)}

':§54 {Y/a : f(b,b), /4 : f(c,b), Y4 : f(b,c), /4 : f(c,c)}

15/25



PTRS
0O00000e0

Conditions for Equivalence of AST cont.

Does non-overlapping and right-linear suffice? — No!

Sa: a — {Y2:b,l2:c}
f(x,x) — {1:f(a,a)}

AST? No:

{1:f(a,a)} =g, {1:f(a,3)} =s, ---

Innermost AST? Yes:

{1:f(a,a)} s, {1/2: f(b,a),/2: f(c,a)}

':§54 {Y/a : f(b,b), /4 : f(c,b), Y4 : f(b,c), /4 : f(c,c)}

15/25



< PTRS
0000000 00000008

t-Linearit Improving on Left-Linearit; Evaluation

Conditions for Equivalence of AST

_

16/25



TRS PTRS Improving on Right-Linearit Improving on Left-Linearit Evaluatio

0000000 0000000@

Conditions for Equivalence of AST

o S is left-linear iff for all ¢ — p € S, ( is linear

16/25



PTRS
O000000e

Conditions for Equivalence of AST

o S is left-linear iff for all ¢ — p € S, ( is linear

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST
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Haskell

Complexity

© Relating different evaluation strategies for TRSs (non-overlapping)
@ Relating different evaluation strategies for probabilistic TRSs (linear)
© Improving on right-linearity

@ Improving on left-linearity
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Improving on Left-Linearity

AST? No
iAST? Yes

Evaluation
00
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Improving on Left-Linearity

Evaluation
00

Spareness
Sy g — {34:f(g),Y/4:0} AST? No
f(x) — {l:c(x,x)} IAST? Yes
Sy g — {3/4:1(0),%a:g} AST? Yes
f(x) — {1:c(x,x)} iAST? Yes

AST? Yes: directly applying the f-rule:

S5 g — {34:¢(0,0),Y/4:g}

No duplication of reducible functions!

(e
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is a constructor

e f(t1,...,t,) basic if f is defined and t; only contains constructors
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o f is defined if there exists a rule (t1,...,t,) = p € S, otherwise it
is a constructor

e f(t1,...,t,) basic if f is defined and t; only contains constructors
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Definition (Spareness)
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A

19/25



Improving on Right-Linearity
ooeo

Spareness

Definition (Defined Symbols, Basic Terms)

o f is defined if there exists a rule (t1,...,t,) = p € S, otherwise it
is a constructor

o f(t1,...,t,) basic if f is defined and ¢; only contains constructors

Definition (Spareness)

Let £ > {p1:r,...,pk: 1k} =p€ES.
@ (o —s po is spare if o(x) is in normal form whenever x occurs more
than once in r;

@ S is spare if only spare rewrite steps are possible if one starts with a
basic term f(t1,...,t,)

A

spare

{1: f(O)}( :Kg)z/ {1:¢(0,0)}

19/25



Improving on Right-Linearity
ooeo

Spareness

Definition (Defined Symbols, Basic Terms)

o f is defined if there exists a rule f(t1,...,t,) = u € S, otherwise it
is a constructor

o f(t1,...,t,) basic if f is defined and ¢; only contains constructors

Definition (Spareness)

Let £ > {p1:n,...,pk 1k} =p€ES.
@ lo —s o is spare if o(x) is in normal form whenever x occurs more
than once in r;
@ S is spare if only spare rewrite steps are possible if one starts with a
basic term f(ty,...,t,)

A

spare

{1: f(O)}( :?s)z’ {1:¢(0,0)}

spareness + basic start term — never duplicate defined functions.
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Conditions for Equivalence of AST (3) and (4)

If S is non-overlapping, left-linear, and right-linear, then:

Evaluation

S is AST < S is iAST
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Conditions for Equivalence of AST (3) and (4)

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

A

If S is non-overlapping, left-linear, and spare, then:

S is AST on basic terms <= S is iAST on basic terms

.
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Complexity

© Relating different evaluation strategies for TRSs (non-overlapping)
@ Relating different evaluation strategies for probabilistic TRSs (linear)
© Improving on right-linearity

@ Improving on left-linearity
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Simultaneous Rewriting

Sa: a — {Y2:b,Y2:c}
f(x,x) — {1:f(a,a)} J

AST? No:
{1:f(a,a)} =s, {1:f(5,3)} =s, - .-

Innermost AST? Yes:

{1:f(a,a)} s, {1/2: f(b,a),1/2: f(c,a)}
S, {1a: f(b,b), a : f(c,b), /s : f(b,c), Ya: f(c,c)}
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AST w.r.t. —s? No:
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S, {1a: f(b,b), a : f(c,b), /s : f(b,c), Ya: f(c,c)}

AST w.r.t. —s? No:

{1:f(a,a) &34 {12 : f(b,b), /2 : f(c,c)} &34

22/25



PTRS Improving on Right-Linearity Improving on Left-Linearity Evaluation
"""" 0000 ooe 00

Conditions for Equivalence of AST (2)

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST
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Conditions for Equivalence of AST (2)

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

.

If S is non-overlapping and right-linear, then:

S is AST <= S is iAST w.r.t. —gs

.
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If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

.

If S is non-overlapping and right-linear, then:

S is AST <= S is iAST w.r.t. —gs
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S is AST on basic terms <— S is iAST w.r.t. — s on basic terms
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Improving on Left-Linearity

Conditions for Equivalence of AST (2)

If S is non-overlapping, left-linear, and right-linear, then:

S is AST < S is iAST

.

If S is non-overlapping and right-linear, then:

S is AST <= S is iAST w.r.t. —gs

.

If S is non-overlapping and spare, then:

S is AST on basic terms <— S is iAST w.r.t. — s on basic terms

There exists powerful tools for iAST w.r.t. —g
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Implementation and Experiments

o Fully implemented in AProVE
@ Evaluated on 118 benchmarks with 91 successful iAST proofs

Proofs for AST:

Old AProVE 36
Thm.1 (LL + RL) 48
Thm.3 (—s+RL) 44

@ Arbitrary start term

New AProVE 49
@ Basic start term
loop(x) — /2 loop(double(x)),1/2 : loop2(x)
loop2(s(x)) — 1:loop2(x)
double(0) — 1:0
double(s(x)) — 1 :s(s(double(x)))
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