AProVE25: Confluence Analysis in a Termination Tool

Jan-Christoph Kassing! and Tobias Sokolowski?

L RWTH Aachen University, Aachen, Germany
Kassing@cs.rwth-aachen.de
2 RWTH Aachen University, Aachen, Germany
Tobias.Sokolowski@rwth-aachen.de

AProVE (Automated Program Verification Environment) is a tool for fully automatic pro-
gram verification. Its primary focus is on proving termination, analyzing (worst-case) com-
plexity, and verifying safety or infeasibility of different programming languages including term
rewriting. For further details on AProVE’s general approach for these analyses, see [3].

Termination and confluence are two closely related properties. Local confluence allows us
to reduce the analysis of termination from arbitrary rewrite sequences to innermost rewrite
sequences, a task that has been shown to be substantially easier. Moreover, the dependency
graph heavily relies on proving infeasibility so that better computable approximations may
yield a more exact model of the actual dependency graph. On the other hand, confluence is a
decidable property if termination is guaranteed. Therefore, AProVE has already implemented
some techniques for confluence, and we want to present the power of the currently implemented
methods and, in the future, to improve confluence and reachability analysis within AProVE.

AProVE relies on three main techniques:

o Termination-based Confluence Analysis: We use our termination analysis to check
whether the well-known decision procedure for confluence is applicable.

o Modularity: We use basic results on modularity of confluence from the last century. To
be precise, we implemented different modularity results mentioned in [1] and [4].

e Joinability and Reachability Analysis: To disprove joinability of critical pairs, AProVE
uses techniques originally designed for proving infeasibility within dependency graph ap-
proximations, e.g., checking for unifiability between the target term and an approximation
of the top part of the source term that remains the same during rewrite steps.

In the future, we want to investigate the problem of confluence within the probabilistic
setting, a question raised in recent years and investigated in, e.g., [2], but which has received
relatively little attention. Due to the complex interplay of probabilities and non-deterministic
choices, we believe that this is an interesting direction for the confluence community.

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
Cambridge, 1998.

[2] Alejandro Diaz-Caro and Guido Martinez. Confluence in Probabilistic Rewriting. Electronic Notes
in Theoretical Computer Science, 338:115-131, October 2018.

[3] Jiirgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten
Fuhs, Jera Hensel, Carsten Otto, Martin Pliicker, Peter Schneider-Kamp, Thomas Stroder,
Stephanie Swiderski, and René Thiemann. Analyzing program termination and complexity au-
tomatically with AProVE. J. Autom. Reason., 58(1):3-31, 2017.

[4] Enno Ohlebusch. Advanced Topics in Term Rewriting. Springer, New York, NY, 2002.



	References

